References
- Abbaspour KC, Yang J, Maximove I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R. 2007. Modeling hydrology and water quality in the pre-alpine/apline Thur watershed using SWAT. Journal of Hydrology 333:413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
- Arnold JG, Allen PM, Bernhardt G. 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology 142:47-69. https://doi.org/10.1016/0022-1694(93)90004-S
- Borah DK, Bera M. 2004. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Transactions of the ASAE 47:789-803. https://doi.org/10.13031/2013.16110
- Du J, Rui H, Zuo T, Li Q, Zheng D, Chen A, Xu Y, Xu CY. 2013. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resources Management 27:2823-2838. https://doi.org/10.1007/s11269-013-0317-0
- Ferraz SFB, Lima WP, Rodrigues CB. 2013. Managing forest plantation landscapes for water conservation. Forest Ecology and Management 301:58-66. https://doi.org/10.1016/j.foreco.2012.10.015
- Jin X, Jin Y, Yuan D, Mao X. 2019. Effects of land-use data resolution on hydrologic modelling, a case study in the upper reach of the Heihe river, Northwest China. Ecological Modeling 404:61-68. https://doi.org/10.1016/j.ecolmodel.2019.02.011
- Kim D, An H, Jang M, Kim S. 2018. Development of a distributed hydrological model considering hydrological change. Korean Journal of Agricultural Science 45:521-532. [in Korean] https://doi.org/10.7744/KJOAS.20180040
- Lim KJ, Engel BA, Kim Y, Bhaduri B, Harbor J. 1999. Development of the long term hydrologic impact assessment (LTHIA) WWW systems. pp. 1018-1023. In Sustaining the Global Farm the 10th International Soil Conservation Organization Meeting.
- Mainali J, Chang H. 2018. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. Journal of Hydrology 564:26-40. https://doi.org/10.1016/j.jhydrol.2018.06.074
- Moriasi DN, Gitau MW, Pai N, Daggupati P. 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of ASABE 58:1763-1785. https://doi.org/10.13031/trans.58.10715
- Pai N, Saraswat D. 2011. SWAT2009_LUC: A tool to activate the land use change module in SWAT 2009. Transactions of the ASABE 54:1649-1658. https://doi.org/10.13031/2013.39854
- Wang G, Mang S, Cai H, Liu S, Zhang Z, Wang L, Innes JL. 2016. Integrated watershed management: Evolution, development and emerging trends. Journal of Foresty Research 27:967-994. https://doi.org/10.1007/s11676-016-0293-3
- Worku T, Khare D, Tripathi SK. 2017. Modeling runoff-sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environmental Earth Science 76:1-14. https://doi.org/10.1007/s12665-016-6304-z
- Yang J, Reichert P, Abbaspour KC, Xia J, Yang H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China. Journal of Hydrology 358:1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012
- Yu J, Noh J, Cho Y. 2020. SWAT model calibration/ validation using SWAT-CUP I: Analysis for uncertainties of objective functions. Journal of Korea Water Resources Association 53:45-56. [in Korean]
- Zhang H, Wang B, Liu DL, Zhang M, Leslie LM, Yu Q. 2020. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology 585:124822. https://doi.org/10.1016/j.jhydrol.2020.124822