과제정보
This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MIST) (NRF-2019R1A5A2027521 and 2020R1I1A1A01061781), and the Chonnam National University Hospital Biomedical Research Institute (BCRI20046).
참고문헌
- Boyle WJ, Simonet WS and Lacey DL (2003) Osteoclast differentiation and activation. Nature 423, 337-342 https://doi.org/10.1038/nature01658
- Kim JH and Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21, 233-241 https://doi.org/10.11005/jbm.2014.21.4.233
- Kim JH and Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52, 12-17 https://doi.org/10.4068/cmj.2016.52.1.12
- Asagiri M, Sato K, Usami T et al (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 202, 1261-1269 https://doi.org/10.1084/jem.20051150
- Takayanagi H, Kim S, Koga T et al (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889-901 https://doi.org/10.1016/S1534-5807(02)00369-6
- Solt LA and May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42, 3-18 https://doi.org/10.1007/s12026-008-8025-1
- Hayden MS and Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18, 2195-2224 https://doi.org/10.1101/gad.1228704
- Ihn HJ, Kim TH, Kim K et al (2019) 2-O-digalloyl-1,3,4,6-tetra-O-galloyl-βκ-D-glucose isolated from Galla Rhois suppresses osteoclast differentiation and function by inhibiting NF-κB signaling. BMB Rep 52, 409-414 https://doi.org/10.5483/BMBRep.2019.52.6.063
- Novack DV, Yin L, Hagen-Stapleton A et al (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198, 771-781 https://doi.org/10.1084/jem.20030116
- Iotsova V, Caamano J, Loy J, Yang Y, Lewin A and Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3, 1285-1289 https://doi.org/10.1038/nm1197-1285
- Boyce BF, Xiu Y, Li J, Xing L and Yao Z (2015) NF-κB-mediated regulation of osteoclastogenesis. Endocrinol Metab (Seoul) 30, 35-44 https://doi.org/10.3803/EnM.2015.30.1.35
- Vaira S, Johnson T, Hirbe AC et al (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 105, 3897-3902 https://doi.org/10.1073/pnas.0708576105
- Yanai H, Negishi H and Taniguchi T (2012) The IRF family of transcription factors: inception, impact and implications in oncogenesis. Oncoimmunology 1, 1376-1386 https://doi.org/10.4161/onci.22475
- Alsamman K and El-Masry OS (2018) Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep 38, 1-14
- Masumi A, Fukazawa H, Shimazu T et al (2006) Nucleolin is involved in interferon regulatory factor-2-dependent transcriptional activation. Oncogene 25, 5113-5124 https://doi.org/10.1038/sj.onc.1209522
- Masumi A, Yamakawa Y, Fukazawa H, Ozato K and Komuro K (2003) Interferon regulatory factor-2 regulates cell growth through its acetylation. J Biol Chem 278, 25401-25407 https://doi.org/10.1074/jbc.M213037200
- Luo W and Skalnik DG (1996) Interferon regulatory factor-2 directs transcription from the gp91phox promoter. J Biol Chem 271, 23445-23451 https://doi.org/10.1074/jbc.271.38.23445
- Jesse TL, LaChance R, Iademarco MF and Dean DC (1998) Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1. J Cell Biol 140, 1265-1276 https://doi.org/10.1083/jcb.140.5.1265
- Salem S, Gao C, Li A et al (2014) A novel role for interferon regulatory factor 1 (IRF1) in regulation of bone metabolism. J Cell Mol Med 18, 1588-1598 https://doi.org/10.1111/jcmm.12327
- Zhao B, Takami M, Yamada A et al (2009) Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med 15, 1066-1071 https://doi.org/10.1038/nm.2007
- Nakashima Y and Haneji T (2013) Stimulation of osteoclast formation by RANKL requires interferon regulatory factor-4 and is inhibited by simvastatin in a mouse model of bone loss. PLoS One 8, e72033 https://doi.org/10.1371/journal.pone.0072033
- Chae M, Kim K, Park SM et al (2008) IRF-2 regulates NF-kappaB activity by modulating the subcellular localization of NF-kappaB. Biochem Biophys Res Commun 370, 519-524 https://doi.org/10.1016/j.bbrc.2008.03.136
- Muhammad K, Alrefai H, Marienfeld R et al (2014) NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 44, 3392-3402 https://doi.org/10.1002/eji.201444756
- Kim I, Kim JH, Kim K, Seong S and Kim N (2019) The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation. BMB Rep 52, 469-474 https://doi.org/10.5483/BMBRep.2019.52.7.104
- Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289, 1504-1508 https://doi.org/10.1126/science.289.5484.1504
- Zhao GN, Jiang DS and Li H (2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta 1852, 365-378 https://doi.org/10.1016/j.bbadis.2014.04.030
- Ge X, Jin Q, Zhang F, Yan T and Zhai Q (2009) PCAF acetylates {beta}-catenin and improves its stability. Mol Biol Cell 20, 419-427 https://doi.org/10.1091/mbc.e08-08-0792
- Kang IS and Kim C (2016) NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 6, 38014 https://doi.org/10.1038/srep38014
- Franzoso G, Carlson L, Xing L et al (1997) Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 11, 3482-3496 https://doi.org/10.1101/gad.11.24.3482
- Lee HI, Lee GR, Lee J et al (2020) Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis. BMB Rep 53, 218-222 https://doi.org/10.5483/BMBRep.2020.53.4.220
- Takatsuna H, Asagiri M, Kubota T et al (2005) Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J Bone Miner Res 20, 653-662 https://doi.org/10.1359/JBMR.041213
- Abu-Amer Y (2013) NF-κB signaling and bone resorption. Osteoporos Int 24, 2377-2386 https://doi.org/10.1007/s00198-013-2313-x
- Kim I, Kim JH, Kim K, Seong S and Kim N (2017) Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1. BMB Rep 50, 454-459 https://doi.org/10.5483/BMBRep.2017.50.9.026