DOI QR코드

DOI QR Code

Free vibration of bi-dimensional functionally graded simply supported beams

  • Selmi, Abdellatif (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University)
  • Received : 2020.11.05
  • Accepted : 2021.07.02
  • Published : 2021.09.25

Abstract

This paper investigates the free vibration of bi-dimensional functionally graded simply supported beams by using the continuous element method. The material properties are considered to vary exponentially along the beam thickness and length. The characteristic frequency equations of simply supported beams are derived by transfer matrix method. Validation targets are other analytical methods. The effects of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams are studied.

Keywords

References

  1. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  2. Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech. A Solid., 30, 72-81. https://doi.org/10.1016/j.euromechsol.2010.10.002.
  3. Atmane, H.A., Tounsi, A., Meftah, S.A. and Belhadj, H.A. (2011), "Free vibration behavior of exponential functionally graded beams with varying cross-section", J. Vib. Control, 17(2), 311-318. https://doi.org/10.1177/1077546310370691.
  4. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FGCNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/10.12989/CAC.2020.26.3.213.
  5. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/SSS.2020.25.2.197.
  6. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geotech. Eng., 21(5), 471-487. https://doi.org/10.12989/GAE.2020.21.5.471.
  7. Eroglu, U. (2015), "In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach", Compos. Struct., 122, 217-228. https://doi.org/10.1016/j.compstruct.2014.11.051.
  8. Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, V.T. (2018), "Free bending vibration analysis of thin bi-directionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014.
  9. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.
  10. Hussain, M. and Selmi, A. (2020a), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9(6), 557-568. http://doi.org/10.12989/acc.2020.9.6.557.
  11. Hussain, M. and Selmi, A. (2020b), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., 9(6), 569-576. http://doi.org/10.12989/acc.2020.9.6.569.
  12. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/CAC.2020.25.1.037.
  13. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
  14. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36, 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  15. Kukla, S. and Rychlewska, J. (2013), "Free vibration analysis of functionally graded beams", J. Appl. Math. Comput. Mech., 12(2), 39-44. https://doi.org/10.17512/jamcm.2013.2.05.
  16. Li, S., Wan, Z. and Zhang, J. (2014), "Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories", Appl. Math. Mech., 35, 591-606. https://doi.org/10.1007/s10483-014-1815-6.
  17. Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003.
  18. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Benrahou, K.H., Tounsi, A. Bedia, E.A.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/SCS.2020.36.3.355.
  19. Nemat-Alla, M. and Noda, N. (2000), "Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading", Acta. Mech., 144, 211-229. https://doi.org/10.1007/BF01170176.
  20. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layer wise theory", Eur. J. Mech. A Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  21. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, Bedia, E.A.A, Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geotech. Eng., 22, 119-132. http://doi.org/10.12989/gae.2020.22.2.119.
  22. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
  23. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally gradedmaterial beam under hygrothermal effect", P.I. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  24. Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 141, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  25. Simsek, M., Kocaturk, T. and Akbas, S. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94, 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
  26. Tong, X., Tabarrok, B. and Yeh, K. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 5(186), 821-835. https://doi.org/10.1006/jsvi.1995.0490.
  27. Wang, Z., Wang, X., Xu, G., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.
  28. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a mesh free boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  29. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/CAC.2020.26.1.063.