DOI QR코드

DOI QR Code

Simplified approach on modeling of embedded reinforcements in flexural concrete members

  • Hosseini, Seyed Muoud (Faculty of Civil Engineering, Babol Noshirvani University of Technology) ;
  • Ghomian, Majid (Faculty of Civil Engineering, Babol Noshirvani University of Technology) ;
  • BaniAsad, Elham (Faculty of Civil Engineering, Babol Noshirvani University of Technology) ;
  • Dehestani, Mehdi (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
  • Received : 2020.04.11
  • Accepted : 2021.07.01
  • Published : 2021.09.25

Abstract

Several factors need to be considered in modeling of reinforced concrete beams. Bond-slip is one of the most important factors that play a key role in the behavior of reinforced concrete structures, under static and dynamic loads. A comparison between the results of experimental tests and numerical models show that considering a complete bond (perfect with no slip) instead of real bond-slip phenomenon, in numerical finite element models leads to higher estimations for the stiffness. In this study, the effects of the bond-slip phenomenon on the behavior of the reinforced concrete beams are considered. It is shown that the influence of bond-slip behavior between steel and concrete depends on the compressive strength of concrete, the concrete cover, stirrups and rebar diameter. Subsequently, a method is proposed to consider the effects of the interfacial behavior between concrete and rebar while a complete bond assumption remains and the rebar is introduced as embedded element in concrete. The bond-slip effect is considered by adding an equivalent strain of bond to the strain of steel rebar and then modifying the terms of the modulus of elasticity of steel. Validation model and parametric analyses are conducted to consider the effects of bond-slip properties and other parameters affecting the behavior of reinforced concrete beams.

Keywords

Acknowledgement

Authors would like to appreciate the faculty members at the Faculty of Civil Engineering of the Babol Noshirvani University of Technology of Iran for their helpful comments and assistance.

References

  1. Abaqus Analysis User's Guide (2013), 6.13 Version.
  2. ACI 318 Committee (2014), Building Code Requirements for Structural Concrete: (ACI 318-14), and Commentary (ACI 318R-14), Concrete Inst., Farmington Hills, MI, USA.
  3. ACI 408 Committee (2003), Bond and Development of Straight Reinforcing Bars in Tension: (ACI 408R-03), Concrete Inst., Farmington Hills, MI, USA.
  4. Alva, G.M.S. and de Cresce El, A.L.H. (2013), "Moment-rotation relationship of RC beam-column connections: Experimental tests and analytical model", Eng. Struct., 56, 1427-1438. https://doi.org/10.1016/j.engstruct.2013.07.016.
  5. Ashtiani, M.S., Dhakal, R.P., Scott, A.N. and Bull, D.K. (2013), "Cyclic beam bending test for assessment of bond-slip behaviour", Eng. Struct., 56, 1684-1697. https://doi.org/10.1016/j.engstruct.2013.08.005.
  6. Balazs, G.L. (1993), "Cracking analysis based on slip and bond stresses", ACI Mater. J., 90, 340-340.
  7. Belarbi, A. and Hsu, T.T. (1994), "Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", Struct. J., 91(4), 465-474.
  8. Bergner H. (1997), Rissbreitenbeschrankung zwangbeanspruchter Bauteile aus hochfestem Normalbeton, Deutscher Ausschuss fur Stahlbeton, 482.
  9. Caprili, S., Mattei, F., Gigliotti, R. and Salvatore, W. (2018), "Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars", Earthq. Struct., 14(3), 187-201. https://doi.org/10.12989/eas.2018.14.3.187.
  10. De Teran, J.R.D. and Haach, V.G. (2018), "Equivalent stress-strain law for embedded reinforcements considering bond-slip effects", Eng. Struct.", 165, 247-253. https://doi.org/10.1016/j.engstruct.2018.03.045.
  11. Dehestani, M. and Mousavi, S.S. (2015), "Modified steel bar model incorporating bond-slip effects for embedded element method", Constr. Build. Mater., 81, 284-290. https://doi.org/10.1016/j.conbuildmat.2015.02.027.
  12. Dehestani, M., Asadi, A. and Mousavi, S.S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.
  13. Du, Y., Clark, L.A. and Chan, A.H. (2007), "Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams", ACI Struct. J., 104(3), 285.
  14. Eligehausen, R., Popov, E.P. and Bertero, V.V. (1982), "Local bond stress-slip relationships of deformed bars under generalized excitations", Proc. Eur. Conf. Earthq. Eng., 4. http://doi.org/10.18419/opus-415.
  15. fib (2010), Bulletin 55: Model Code for Concrete Structures 2010, First Complete Draft, Int. Fed. Struct. Concrete, Lausanne.
  16. Gambarova, P.G. and Rosati, G.P. (1997), "Bond and splitting in bar pull-out: behavioural laws and concrete cover role", Mag. Concrete Res., 49(179), 99-110. https://doi.org/10.1680/macr.1997.49.179.99.
  17. Han, D., Keuser, M., Zhao, X. and Langer, B. (2011), "Influence of transverse reinforcing bar spacing on flexural crack spacing on reinforced concrete", Proc. Eng., 14, 2238-2245. https://doi.org/10.1016/j.proeng.2011.07.282.
  18. Harajli, M., Hamad, B. and Karam, K. (2002), "Bond-slip response of reinforcing bars embedded in plain and fiber concrete", J. Mater. Civil Eng., 14(6), 503-511. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(503).
  19. Harajli, M.H. (2007), "Numerical bond analysis using experimentally derived local bond laws: a powerful method for evaluating the bond strength of steel bars", J. Struct. Eng., 133(5), 695-705. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(695).
  20. Harajli, M.H., Hout, M. and Jalkh, W. (1995), "Local bond stressslip behavior of reinforcing bars embedded in plain and fiber concrete", Mater. J., 92(4), 343-353.
  21. Hashemi, S.S., Tasnimi, A.A. and Soltani, M. (2009), "Nonlinear cyclic analysis of reinforced concrete frames, utilizing new joint element", Sci. Iran., Trans. A, 16(5), 490-501.
  22. Holschemacher, K., Weisse, D. and Klotz, S. (2004), "Bond of reinforcement in ultra high strength concrete", Proceedings of the International Symposium on UHPC, Kassel, Germany.
  23. Jiang, T., Zhang, X., Wu, Z. and Abdellahi, M.M. (2017), "Bond-slip response of plain bars embedded in self-compacting lightweight aggregate concrete under lateral tensions", J. Mater. Civil Eng., 29(9), 04017084. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001893.
  24. Khalfallah, S. (2008), "Tension stiffening bond modelling of cracked flexural reinforced concrete beams", J. Civil Eng. Manage, 14(2), 131-137. https://doi.org/10.3846/1392-3730.2008.14.8.
  25. Kwak, H.G. and Filippou, F.C. (1995), "A new reinforcing steel model with bond-slip", Struct. Eng. Mech., 3(4), 299-312. http://doi.org/10.12989/sem.1995.3.4.299.
  26. Kwak, H.G. and Kim, S.P. (2001), "Nonlinear analysis of RC beam subject to cyclic loading", J. Struct. Eng., 127(12), 1436-1444. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1436).
  27. Kwak, H.G. and Kim, S.P. (2002), "Cyclic moment-curvature relation of an RC beam", Mag. Concrete Res., 54(6), 435-447. https://doi.org/10.1680/macr.2002.54.6.435.
  28. Lee, W., Kwak, H.G. and Hwang, J.Y. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 1-Simplified numerical model", Steel Compos. Struct., 32(4), 537-548. https://doi.org/10.12989/scs.2019.32.4.537.
  29. Lee, W., Kwak, H.G. and Kim, J.R. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 2-Improvement of shear stud spacing in SCP", Steel Compos. Struct., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549.
  30. Luccioni, B.M., Lopez, D.E. and Danesi, R.F. (2005), "Bond-slip in reinforced concrete elements", J. Struct. Eng., 131(11), 1690-1698. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1690).
  31. Lykidis, G.C. and Spiliopoulos, K.V. (2008), "3D solid finite-element analysis of cyclically loaded RC structures allowing embedded reinforcement slippage", J. Struct. Eng., 134(4), 629-638. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(629).
  32. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  33. Mertol, H.C., Baran, E. and Bello, H.J. (2015), "Flexural behavior of lightly and heavily reinforced steel fiber concrete beams", Constr. Build. Mater., 98, 185-193. https://doi.org/10.1016/j.conbuildmat.2015.08.032.
  34. Mohemmi, M., Broujerdian, V. and Rajaeian, P. (2020), "An equivalent method for bar slip simulation in reinforced concrete frames", Int. J. Civil Eng., 1-13. https://doi.org/10.1007/s40999-019-00473-8
  35. Mousavi, S.S. and Dehestani, M. (2015), "Implementation of bond-slip effects on behaviour of slabs in structures", Comput. Concrete, 16(2), 311-327. http://doi.org/10.12989/cac.2015.16.2.311.
  36. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
  37. Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
  38. Rabczuk, T., Akkermann, J. and Eibl, J. (2005), "A numerical model for reinforced concrete structures", Int. J. Solid. Struct., 42(5-6), 1327-1354. https://doi.org/10.1016/j.ijsolstr.2004.07.019.
  39. Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.
  40. Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.
  41. Silva, B.D.V., Barbosa, M.P., Silva Filho, L.C.P.D. and Lorrain, M.S. (2013), "Experimental investigation on the use of steelconcrete bond tests for estimating axial compressive strength of concrete: part 1", Revista IBRACON de Estruturas e Materiais, 6(5), 715-736. https://doi.org/10.1590/S1983-41952013000500003.
  42. Tang, C.W. (2018), "Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures", Struct. Eng. Mech., 66(4), 477-485. https://doi.org/10.12989/sem.2018.66.4.477.
  43. Wang, Z.H., Li, L., Zhang, Y.X. and Zheng, S.S. (2019), "Reinforcement model considering slip effect", Eng. Struct., 198, 109493. https://doi.org/10.1016/j.engstruct.2019.109493.
  44. Wu, Y.F. and Zhao, X.M. (2013), "Unified bond stress-slip model for reinforced concrete", J. Struct. Eng., 139(11), 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747.
  45. Xiu Li, C., Shen, D.J., He, P.L., Dong, X.F. and Zhang, H.F. (2012), "Crack width calculation of steel reinforced concrete beams considering the bond-slip", Appl. Mech. and Mater., 166, 1395-1398. https://doi.org/10.4028/www.scientific.net/AMM.166-169.1395.
  46. Zhu, W. and Francois, R. (2014), "Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam", Constr. Build. Mater., 51, 461-472. https://doi.org/10.1016/j.conbuildmat.2013.11.015.