DOI QR코드

DOI QR Code

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence

심탄도와 인공지능을 이용한 혈당수치 예측모델 연구

  • Received : 2021.07.30
  • Accepted : 2021.09.20
  • Published : 2021.09.28

Abstract

The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

논문은 심탄도(BCG, Ballistocardiogram) 센서를 이용하여 생체신호 데이터를 비침습, 무구속적인 방식으로 수집하고, ICT 기술과 고성능 컴퓨팅 환경에서 인공지능 기계학습 알고리즘을 활용하여 데이터 기반 혈당 예측 알고리즘 모델 개발 및 검증하는 방법을 제시하고 연구하는 것이다. 혈당수치 예측모델은 MLP 아키텍처에 입력노드는 심박수, 호흡수, 심박출량, 심박변이도, SDNN, RMSSD, PNN50, 나이, 성별이며, 은닉층 7개를 사용하였다. 실험 결과는 5회 실험한 학습데이터의 평균 MSE, MAE 및 RMSE 값은 각각 0.5226, 0.6328 및 0.7692이며 검증데이터 평균 값은 각각 0.5408, 0.6776, 0.7968이었으며, 결정계수(R2) 수치는 0.9997의 결과를 보였다. 데이터를 기반으로 한 혈당수치를 예측하는 모델을 표준화하고 데이터셋 수집과 예측 정확성을 검증하는 연구가 계속적으로 진행된다면 비침습 방식의 혈당 수준 관리에 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. KyungHee University Medical Center (2021.07.25). Medical Commons:Diabetes. https://www.khuh.or.kr/04/01.php? hospitalpath=md&table=mdlecture&page=1&command=view_article&key=262&s_key=&keycode=&keycode2=
  2. Ruth S Weinstock. (2021.05.20). Patient education: Blood glucose monitoring in diabetes (Beyond the Basics). https://www.uptodate.com/contents/blood-glucose-monitoring-in-diabetes-beyond-the-basics
  3. Wolfsdorf, Joseph & Glaser, Nicole & Agus, Michael & Fritsch, Maria & Hanas, Ragnar & Rewers, Arleta & Sperling, Mark & Codner, Ethel. (2018). Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State: A Consensus Statement from the International Society for Pediatric and Adolescent Diabetes. Pediatric Diabetes. 19 Suppl 27. DOI : 10.1111/pedi.12701.
  4. Yanggyo Kang. (2019). Glucose Management Using Continuous Glucose Monitors. J Korean Diabetes 2019;20:42-46. DOI : 10.4093/jkd.2019.20.1.42
  5. Korean Diabetes Association. (2016.03.23). 2015 Treatment Guidelines for Diabetes. Gold Planning. Seoul. https://www.diabetes.or.kr
  6. Ganz, T., Wainstein, J., Gilad, S., Limor, R., Boaz, M., & Stern, N. (2017). Serum asymmetric dimethylarginine and arginine levels predict microvascular and macrovascular complications in type 2 diabetes mellitus. Diabetes/metabolism research and reviews, 33(2), DOI : 10.1002/dmrr.2836
  7. American Diabetes Association. (2009). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. Vol. 32 (Supplement 1) S62-S67; DOI: 10.2337/dc09-S062
  8. Hovorka R. (2015). Artificial Pancreas Project at Cambridge 2013. Diabetic medicine : a journal of the British Diabetic Association, 32(8), 987-992. DOI : 10.1111/dme.12766
  9. Sudharsan, B., Peeples, M., & Shomali, M. (2015). Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. Journal of diabetes science and technology, 9(1), 86-90. DOI : 10.1177/1932296814554260
  10. Zhang, L., Wang, Y., Niu, M., Wang, C., & Wang, Z. (2020). Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study. Scientific reports, 10(1), 4406. DOI : 10.1038/s41598-020-61123-x
  11. Plis, K., Bunescu, R.C., Marling, C., Shubrook, J., & Schwartz, F. (2014). A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management. AAAI Workshop: Modern Artificial Intelligence for Health Analytics.
  12. Pustozerov, E., Popova, P., Tkachuk, A., Bolotko, Y., Yuldashev, Z., & Grineva, E. (2018). Development and Evaluation of a Mobile Personalized Blood Glucose Prediction System for Patients With Gestational Diabetes Mellitus. JMIR mHealth and uHealth, 6(1), e6. DOI : 10.2196/mhealth.9236
  13. Konstam M. A. (2012). Home monitoring should be the central element in an effective program of heart failure disease management. Circulation, 125(6), 820-827. DOI : 10.1161/CIRCULATIONAHA.111.031161
  14. Fye W. B. (1994). A history of the origin, evolution, and impact of electrocardiography. The American journal of cardiology. 73(13). 937-949. DOI : 10.1016/0002-9149(94)90135-x
  15. Gordon J. W. (1877). Certain Molar Movements of the Human Body produced by the Circulation of the Blood. Journal of anatomy and physiology, 11(Pt 3), 533-536.
  16. Alvarado-Serrano, C., Luna-Lozano, P.S., & Pallas-Areny, R. (2016). An algorithm for beat-to-beat heart rate detection from the BCG based on the continuous spline wavelet transform. Biomed. Signal Process. Control., 27, 96-102. DOI : 10.1016/j.bspc.2016.02.002.
  17. Murata, (2020.09.10). Contactless Bed Sensor, Inertial force Sensor. Murata Manufacturing Co., Ltd. http://www.murata.com/products/sensor/accel/sca10h_11h.
  18. Amos, A. F., McCarty, D. J., & Zimmet, P. (1997). The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic medicine : a journal of the British Diabetic Association, 14 Suppl 5, S1-S85.
  19. Korean Diabetes Association. (2021.04.05) 2021 Diabetes Treatment Guidelines Guidelines. https://www.diabetes.or.kr/pro/publish/guide.php?mode=list
  20. Heinemann, L., & Boecker, D. (2011). Lancing: quo vadis?. Journal of diabetes science and technology, 5(4), 966-981. DOI : 10.1177/193229681100500420
  21. Lyandres, O., Yuen, J. M., Shah, N. C., VanDuyne, R. P., Walsh, J. T., & Glucksberg, M. R. (2008). Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes technology & therapeutics, 10(4), 257-265. DOI : 10.1089/dia.2007.0288
  22. Wahr, J. A., Tremper, K. K., Samra, S., & Delpy, D. T. (1996). Near-infrared spectroscopy: theory and applications. Journal of cardiothoracic and vascular anesthesia, 10(3), 406-418. DOI : 10.1016/s1053-0770(96)80107-8
  23. Siesler, Heinz & Ozaki, Yukihiro & Kawata, S. & Heise, Herbert. (2002). Near-Infrared Spectroscopy: Principles, Instruments, Applications. 16. 636-638.
  24. Sbrignadello, Stefano & Tura, Andrea & Ravazzani, Paolo. (2013). Electroimpedance Spectroscopy for the Measurement of the Dielectric Properties of Sodium Chloride Solutions at Different Glucose Concentrations. Journal of Spectroscopy. 2013. DOI : 10.1155/2013/571372.
  25. Murata Electronics. (2021.4.15). Acceleration Sensor Modules SCA11H-A01-036 Data Sheet. https://www.murata.com/en-global/products/sensor/accel/overview/lineup/sca10h_11h.
  26. Ministry of Food and Drug Safety. (2019.09.23). Blood glucose monitoring systems, self-testing. https://udiportal.mfds.go.kr/brd/view/P03_01?ntceSn=14
  27. Accu-chek Instant. (2019. 3. 21). User's Manual; Blood Glucose Meter. https://www.accu-chekcac.com/en/download/file/fid/13361
  28. Murata Electronics. (2015.11.12). Ballistocaiographic sensors provide contact-less approach to measuring patient vital signs. https://www.murata.com/en-eu/products/info/sensor/accel/2015/1112
  29. Sami Nurmi, (2016). Nocturnal sleep quality and quantity analysis with ballistocardiography. School of Electrical Engineering, Espoo, Finland, 2016.
  30. Sang-Ki, Choi., Geo-Lyong, Lee., (2020). Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study). Journal of Digital Convergence. Vol.18. No.8. 231-242. 10.14400/JDC.2020.18.8.231
  31. Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987). Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes care, 10(5), 622-628. DOI : 10.2337/diacare.10.5.622
  32. Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PloS one, 13(4), e0195166. DOI : 10.1371/journal.pone.0195166
  33. Minato, S., Takenouchi, A., Uchida, J., Tsuboi, A., Kurata, M., Fukuo, K., & Kazumi, T. (2017). Association of Whole Blood Viscosity With Metabolic Syndrome in Type 2 Diabetic Patients: Independent Association With Post-Breakfast Triglyceridemia. Journal of clinical medicine research, 9(4), 332-338. DOI : 10.14740/jocmr2885w
  34. Ahn, C. W.. (2014). Clinical study for diagnostic efficacy of diabetic angiopathy using hemorheological measurement system (RheoScan). MOHW. Health Technology R&D Project. Yonsei University Industry-Academic Innovation Team
  35. Clarke W. L. (2005). The original Clarke Error Grid Analysis (EGA). Diabetes technology & therapeutics, 7(5), 776-779. DOI : 10.1089/dia.2005.7.776