Acknowledgement
This work was supported by BK21 FOUR Program by Pusan National University Research Grant, 2020 and the research by J.-H. Yoon was supported by National Research Foundation of Korea grants funded by the Korean government(NRF-2019R1A2C108931011).
References
- F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637-654. https://doi.org/10.1086/260062
- T.S. Dai, C.Y. Chiu and L.C. Liu, Vulnerable option pricing: The dual problem, The 19th Conference on the Theories and Practices of Securities and Financial Market, Kaohsiung, Taiwan, 2011.
- H. Eltayeb, and A. Kilicman, A note on Mellin transform and partial differential equations, Int. J. Pure Appl. Math. 34 (2007), 457-467.
- R. Frontczak and R. Schobel, On modified Mellin transforms, Gauss-Laguerre quadrature, and the valuation of American call options, J. Comput. Appl. Math. 234 (2010), 1559-1571. https://doi.org/10.1016/j.cam.2010.02.037
- R.C. Heynen and H.M. Kat, Pricing and hedging power options, Financ. Eng. Jpn. Mark. 3 (1996), 253-261. https://doi.org/10.1007/BF02425804
- H. Johnson and R. Stulz, The pricing of options with default risk, J. Finance 42 (1987), 267-280. https://doi.org/10.1111/j.1540-6261.1987.tb02567.x
- D. Kim, S.-Y. Choi and J.-H. Yoon, Pricing of vulnerable options under hybrid stochastic and local volatility, Chaos Solitons Fractals 146 (2021). https://doi.org/10.1016/j.chaos.2021.110846
- D. Kim, J-H. Yoon and G. Kim, Closed-form pricing formula for foreign equity option with credit risk, Advances in Difference Equations 2021 (2021), 1-17. https://doi.org/10.1186/s13662-020-03162-2
- P.L. Krapivsky and E. Ben-Naim, Scaling and multiscaling in models of fragmentation, Phys. Rev. E. 50 (1994), 3502-3507. https://doi.org/10.1103/PhysRevE.50.3502
- B. Oksendal, Stochastic Differential Equations, Springer, New York, 2003.
- R. Panini and R.P. Srivastav, Option pricing with Mellin transnforms, Math. Comput. Model. 40 (2004), 43-56. https://doi.org/10.1016/j.mcm.2004.07.008
- R. Panini, and R.P. Srivastav, Pricing perpetual options using Mellin transforms, Appl. Math. Lett. 18 (2005), 471-474. https://doi.org/10.1016/j.aml.2004.03.012
- L. Tian, G. Wang, X. Wang and Y. Wang, Pricing vulnerable options with correlated credit risk under jump-diffusion processes, J. Futures Mark. 34 (2014), 957-979. https://doi.org/10.1002/fut.21629
- Y. Lee, Y. Kim and J. Lee, Pricing Various Types of Power Options under Stochastic Volatility, Symmetry 12 (2020), 1-13. https://doi.org/10.3390/sym12010001
- S.-J. Yang, M.-K. Lee and J.-H. Kim, Pricing vulnerable options under a stochastic volatility model, Appl. Math. Lett. 34 (2014), 7-12. https://doi.org/10.1016/j.aml.2014.03.007
- J.-H. Yoon and J.-H. Kim, The pricing of vulnerable options with double Mellin transforms, J. Math. Anal. Appl. 422 (2015), 838-857. https://doi.org/10.1016/j.jmaa.2014.09.015
- Z. Zhang, Z.W. Liu and Y. Sheng, Valuation of power option for uncertain financial market, Appl. Math. Comput. 286 (2016), 257-264. https://doi.org/10.1016/j.amc.2016.04.032