DOI QR코드

DOI QR Code

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S. (College of Talmage Liberal Arts, Hannam University) ;
  • RYOO, C.S. (Department of Mathematics, Hannam University)
  • Received : 2021.05.03
  • Accepted : 2021.08.04
  • Published : 2021.09.30

Abstract

In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2019R1G1A1100687).

References

  1. N.M. Atakishiyev, S.M. Nagiyev, On the RogersSzego polynomials, J. Phys. A: Math. Gen. 27 (1994), L611-L615. https://doi.org/10.1088/0305-4470/27/17/003
  2. Yue Cai, Margaret A.Readdy, q-Stirling numbers, Advances in Applied Mathematics 86 (2017), 50-80. https://doi.org/10.1016/j.aam.2016.11.007
  3. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q parameter, Journal of Number Theory 152 (2015), 38-54. https://doi.org/10.1016/j.jnt.2014.12.004
  4. L. Carlitz, Weighted Stirling numbers of the first kind and second kind-I, Fibonacci Quart 18 (1980), 147-162.
  5. U. Duran, M. Acikoz, S. Araci, On (q, r, w)-stirling numbers of the second kind, Journal of Inequalities and Special Functions 9 (2018), 9-16.
  6. K.W. Hwang, B.R. Nam, N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. & Informatics 35 (2017), 611-621. https://doi.org/10.14317/jami.2017.611
  7. Burak Kurt, Some identities for the generalized poly-Genocchi polynomials with the parameters a, b, and c, Journal of Mathematical Analysis 8 (2017), 156-163.
  8. N.I. Mahmudov, q-Analogues of the Bernoulli and Genocchi polynomials and Srivastava-Pinter addition theorem, Discrete Dynamics in Nature and Society 2012 (2012), 1-8. https://doi.org/10.1155/2012/169348
  9. Toufik Mansour, Identities for sums of a q-analogue of polylogarithm functions, Letters in Mathematical Physics 87 (2009), 1-18. https://doi.org/10.1007/s11005-008-0290-3
  10. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. & Informatics 35 (2017), 113-120. https://doi.org/10.14317/jami.2017.113
  11. Charalambos A. Charalambides, discrete q-distribution, John Wiley & Sons Inc., Wiley Online Books, 2016.