References
- M.V. Aarset, How to Identify a Bathtub Hazard Rate Reliability, IEEE Transactions R-36 (1987), 106-108.
- I.B. Abdul-Moniem and H.F. Abdel-Hameed, On exponentiated Lomax distribution, International Journal of Mathematical Archive 3 (2012), 2144-2150.
- A.Z. Afify, Z.M. Nofal, H.M. Yousof, Y.M. El Gebaly and N.S. Butt, The Transmuted Weibull Lomax Distribution: Properties and Application, Pakistan Journal of Statistics and Operations Research 11 (2015), 135-152. https://doi.org/10.18187/pjsor.v11i1.956
- A.Z. Afify, D. Kumar and I. Elbatal, Marshall-Olkin Power Generalized Weibull distribution with applications in Engineering and Medicine, Journal of Statistical Theory and Applications 19 (2020a), 223-237. https://doi.org/10.2991/jsta.d.200507.004
- A.Z. Afify, M. Nassar, G.M. Cordeiro and D. Kumar, The Weibull Marshall-Olkin Lindley distribution: properties and estimation, Journal of Taibah University for Science 14 (2020b), 192-204. https://doi.org/10.1080/16583655.2020.1715017
- A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (2013), 63-79. https://doi.org/10.1007/s40300-013-0007-y
- I.E.L. Bata and A. Kareem, Statistical properties of Kumaraswamy exponentiated Lomax distribution, journal of Modern Mathematics and Statistics 8 (2014), 1-7.
- G.M. Cordeiro, A.J. Lemonte and E.M. Ortega, The Marshall-Olkin family of distributions: mathematical properties and new models, Journal of Statistical Theory and Practice 8 (2014), 343-366. https://doi.org/10.1080/15598608.2013.802659
- G.M. Cordeiro, E.M.M. Ortega and T.G. Ramires, A new generalized Weibull family of distributions: mathematical properties and applications, J. Stat. Distrib. Appl. 2 (2015), 1-25. https://doi.org/10.1186/s40488-014-0024-2
- G.M. Cordeiro, A.Z. Afify, H.M. Yousof, R.R. Pescim and G.R. Aryal, The exponentiated Weibull-H family of distributions: theory and applications, Mediterr. J. Math. 14 (2017). https://doi.org/10.1007/s00009-017-0955-1
- B. Efron, Logistic regression, survival analysis and the Kaplan-Meier curve, Journal of the American Statistical Association 83 (1988), 402, 414-425. https://doi.org/10.1080/01621459.1988.10478612
- P. Flajonet and A. Odlyzko, Singularity analysis of generating function, SIAM: SIAM J. Discr. Math. 3 (1990), 216-240. https://doi.org/10.1137/0403019
- P. Flajonet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, ISBN:978-0-521-89806-5 2009.
- M.E. Ghitany, F.A. Al-Awadhi and L.A. Alkhalfan, Marshall-Olkin extended Lomax distribution and its application to censored data, Communications in Statistics-Theroy and Methods 36 (2007), 1855-1866. https://doi.org/10.1080/03610920601126571
- A. Hassan and M. Abd-Allah, Exponentiated Weibull-Lomax Distribution: Properties and Estimation, Journal of data science 16 (2018), 277-298.
- A.S. Hassan and M.A. Abdelghafar, Exponentiated Lomax Geometric Distribution: Properties and Applications, Pak. J. Stat. Oper. Res. 13 (2017), 545-566. https://doi.org/10.18187/pjsor.v13i3.1437
- S.A. Kemaloglu and M. Yilmaz, Transmuted two-parameter Lindley distribution, Commun Stat. Theory Methods 46 (2017), 11866-11879. https://doi.org/10.1080/03610926.2017.1285933
- M.C. Korkmaz, G.M. Cordeiro, H.M. Yousof, R.R. Pescim, A.Z. Afify and S. Nadarahah, The Weibull Marshall-Olkin family: regression model and applications to censored data, Commun. Stat. Theory and Methods 48 (2018), 4171-4194. https://doi.org/10.1080/03610926.2018.1490430
- E.L. Lehmann, The power of rank tests, Annals of Mathematical Statistics 24 (1953), 23-43. https://doi.org/10.1214/aoms/1177729080
- E.T. Lee and J.W. Wang, Statistical methods for survival data analysis, Wiley, New York, 2003.
- A.W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), 641-652. https://doi.org/10.1093/biomet/84.3.641
- M.E. Mead, On Five-Parameter Lomax Distribution: Properties and Applications, Pak. j. stat. oper. res. 12 (2016), 185-199. https://doi.org/10.18187/pjsor.v11i4.1163
- J. Navarro, M. Franco and J.M. Ruiz, Characterization through moments of the residual life and conditional spacing, The Indian Journal of Statistics 60 (1998), 36-48.
- P.E. Oguntunde, M.A. Khaleel, M.T. Ahmed, A.O. Adejumo and O.A. Odetunmibi, A new generalization of the Lomax distribution with increasing, decreasing, and constant failure rate, Modelling and Simulation in Engineering 2017 (2017), 1-6.
- E.A. Rady, W.A. Hassanein and T.A. Elhaddad, The power Lomax distribution with an application to bladder cancer data, Springer Plus 5 (2016), 18-38. https://doi.org/10.1186/s40064-015-1644-9
- T.M. Shams, The Kumaraswamy-Generalized Lomax Distribution, Middle-East Journal of Scientific Research 17 (2013), 641-646.
- C.J. Tablada and G.M. Cordeiro, The Beta Marshall-Olkin Lomax distribution, 2018. https://www.ine.pt/revstat/pdf/thebetamarshallolkinlomaxdistribution.pdf
- M.H. Tahir, G.M. Cordeiro, M. Mansoor and M. Zubair, The Weibull-Lomax distribution: properties and applications, Hacettepe Journal of Mathematics and Statistics 44 (2015), 461-480.