DOI QR코드

DOI QR Code

Biosynthesis of trifolin, a bioactive flavonoid by biotransformation

생물전환으로 생리활성물질인 trifolin의 생합성

  • Noh, Hye-Ryeong (Department of Forest Resources, Gyeongsang National University) ;
  • Kang, Ju-Yeong (Department of Forest Resources, Gyeongsang National University) ;
  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongsang National University)
  • Received : 2021.08.18
  • Accepted : 2021.09.02
  • Published : 2021.09.30

Abstract

Kaempferol 3-O-galactoside (Trifolin), a member of the flavonol group, has been reported to have anticancer effects against promyelocytic leukemia, histocytic lymphoma, skin melanoma and lung cancer. Trifolin has been extracted and used from several plants, but the extraction process is complicated and the final yield is low. Biotransformation is an alternative tool to produce high value-added chemicals from inexpensive compounds. To synthesis trifolin from naringenin, three genes (PeFLS and OsUGE-PhUGT) were introduced into Escherichia coli, respectively. In order to synthesis trifolin from naringenin, a co-culture fermentation system was established by optimizing the cell concentration, biotransformation temperature and medium, isopropyl-β-D-thiogalactoside (IPTG) concentration, substrate supply concentration, and recombinant protein induction time. The established optimal conditions for trifolin production were a 3:1 ratio of BL-UGTE to BL-FLS, induction of recombinant protein at 25 ℃ for 4 h after addition of 2.0 mM IPTG, biotransformation at 30 ℃, and supply of 300 μM naringenin. Through the optimized co-culture fermentation system, trifolin was biosynthesized up to 67.3 mg/L.

Trifolin (kaempferol 3-O-galactoside)는 플라보놀 그룹에 속하는 물질로 아토피, 항균, 폐암에 효과가 있는 것으로 알려져 있다. Trifolin은 다양한 식물에서 추출하여 사용하고 있지만 추출 과정이 복잡하고, 수율이 낮으며, 추출을 위한 바이오매스를 얻는데 계절적 어려움이 있다. 생물전환은 저렴한 화합물에서 고부가가치 화학물질을 생산할 수 있는 대체 수단으로 이용된다. 본 연구에서는 naringenin으로부터 trifolin을 생합성하기 위해 3개의 유전자(PeFLS 및 OsUGE-PhUGT)를 각각의 대장균에 도입한 BL-FLS균주와 BL-UGTE균주를 이용하여 공조배양시스템을 개발하였다. Naringenin으로부터 trifolin을 생합성하기 위해 세포의 밀도, 생물전환 온도, 재조합 단백질 유도의 적정 IPTG농도 및 시간, 기질 공급 농도 등의 최적화를 실시하였다. 최적화된 공동 배양 발효 시스템을 통해 67.3 mg/L의 trifolin을 성공적으로 생합성 하였다.

Keywords

Acknowledgement

이 논문은 경상국립대학교 2020-2021년도 대학회계 연구비에 의하여 연구되었습니다.

References

  1. Candolle Ade, Candolle APde (1844) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Wurtz 176-685. doi: 10.5962/bhl.title.286
  2. Baillon H (1860) Adansonia; recueil d'observations botaniques /redige par le Dr. H. Baillon. v.1, 109. Nabu Press, Paris
  3. Schubert BG (1967) Journal of the Arnold Arboretum. Dissertation, The Arnold Arboretum of Harvard Univeisity
  4. Perdue RE (1968) Camptotheca acuminata: Source of promising cancer drug. Lasca Leaves 55-59
  5. Zhang Y, Wang D, Yang L, Zhou D, Zhang J (2014) Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS One 9(8):e105725. doi: 10.1371/journal.pone.0105725
  6. Ragasa CY, Puno MR, Sengson JM, Shen CC, Rideout JA, Raga DD (2009) Bioactive triterpenes from Diospyros blancoi. Nat Prod Res 23(13):1252-1258. doi: 10.1080/14786410902951054
  7. Li S, Zhang Z, Cain A, Wang B, Long M, Taylor J (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem. 53(1):32-37. doi: 10.1021/jf0484780
  8. Diaz JG, Carmona AJ, Torres F, Quintana J, Estevez F, Herz W (2008) Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana. Planta Med 74(2):171-174. doi: 10.1055/s-2008-1034278
  9. Kim MJ, Kwon SB, Kim MS, Jin SW, Ryu HW, Oh SR, Yoon DY (2016) Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine 23(10):998-1004. doi: 10.1016/j.phymed.2016.05.009
  10. Zhang Z, Li S, Zhang S, Liang C, Gorenstein D, Beasley RS (2004) New camptothecin and ellagic acid analogues from the root bark of Camptotheca acuminata. Planta Med 70:1216-1221. doi: 10.1055/s2004-835854
  11. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352. doi: 10.3390/molecules15107313
  12. Xingfeng G, Daijie W, Wenjuan D, Jinhua D, Xiao W (2010) Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography. Phytochem Anal 21: 268-272. doi: 10.1002/pca.1196
  13. Maneechai S, De-Eknamkul W, Umehara K, Noguchi H, Likhitwitayawuid K (2012) Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry. 81:42-49. doi: 10.1016/j.phytochem.2012.05.031
  14. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 4(1):10-20. doi: 10.4103/0975-7406.92725
  15. Lee SJ, Sim GY, Kang H, Yeo WS, Kim BG, Ahn JH (2018) Synthesis of avenanthramides using engineered Escherichia coli. Microb Cell Fact 17(1):46. doi: 10.1186/s12934-018-0896-9
  16. Kim BG (2019) Optimization of bioactive isorhamnetin 3-O-glucoside production in Escherichia coli. J Appl Biol Chem 62(4):361-366. doi: 10.3839/jabc.2019.050
  17. Kim BG (2019) Biological synthesis of genistein in Escherichia coli. J Microbiol Biotechnol 30(5):770-776. doi: 10.4014/jmb.1911.11009
  18. Cao H, Chen X, Jassbi AR, Xiao J (2015) Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 33(1):214-223. doi: 10.1016/j.biotechadv.2014.10.012
  19. Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH (2015) Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol 99(7):2979-2988. doi: 10.1007/s00253-015-6504-6
  20. An DG, Yang SM, Kim BG, Ahn JH (2016) Biosynthesis of two quercetin O-diglycosides in Escherichia coli. J Ind Microbiol Biotechnol 43(6):841-849. doi: 10.1007/s10295-016-1750-x
  21. Kim BG (2019) Biosynthesis of bioactive isokaemferide from naringenin in Escherichia coli. J Appl Biol Chem 62(1):1-6. doi: 10.3839/jabc.2019.001
  22. Kim SK, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn JH (2009) Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J Korean Soc Appl Biol Chem 52(4):315-320 https://doi.org/10.3839/jksabc.2009.056
  23. Kim SY, Lee HR, Park KS, Kim BG, Ahn JH (2015) Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol 99:2233-2242. doi: 10.1007/s00253-014-6282-6
  24. Kim BG, Koe EJ, Ahn JH (2009) Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnol Lett 32:579-584. doi: 10.1007/s10529-009-0188-x
  25. Kim JH, Kim BG, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2007) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70:1471-1477. doi: 10.1271/bbb.60006
  26. Kim MJ, Kim BG, Ahn JH (2013) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97(16): 7195-7204 https://doi.org/10.1007/s00253-013-5020-9
  27. Zhou S, Yuan SF, Nair PH, Alper HS, Deng Y, Zhou J (2021) Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng 67:41-52. doi: 10.1016/j.ymben.2021.05.007
  28. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69: 2699-2706. doi: 10.1128/AEM.69.5.2699-2706.2003
  29. Li M, Zhao M, Wei P, Zhang C, Lu W (2021) Biosynthesis of soyasapogenol B by engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol. doi: 10.1007/s12010-021-03599-5