DOI QR코드

DOI QR Code

UPLC-QTOF-MS분석를 이용한 국내산 더덕 주산지의 표지물질 선정

Selecting marker substances of main producing area of Codonopsis lanceolata in Korea using UPLC-QTOF-MS analysis

  • An, Young Min (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jang, Hyun-Jae (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Doo-Young (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Baek, Nam-In (Graduate School of Biotechnology, Kyung Hee University) ;
  • Oh, Sei-Ryang (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Dae Young (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Ryu, Hyung Won (Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 투고 : 2021.04.27
  • 심사 : 2021.07.28
  • 발행 : 2021.09.30

초록

더덕(Codonopsis lanceolata)은 주로 한국, 중국 등 동아시아 지역에 재배되고 있으며, 더덕의 뿌리는 기침, 기관지염, 천식, 결핵, 소화 불량의 증상을 치료하기 위한 기능성 식품 및 전통 의학으로 사용되어져 왔다. 보고된 바에 의하면 phenylpropanoids, polyacetylenes, saponins, flavonoids와 같은 다양한 식물 천연물 성분들이 항비만, 항염, 항암, 항산화, 항미생물 활성과 같은 약리학적 작용에 관여한다고 보고되어 있다. MS기반 대사체학 분석을 이용한 주산지의 마커 성분을 선정하는 것은 다른 지역에서 재배된 약용 식물의 안전성뿐만 아니라 화학적 조성과 생물학적 효능의 변화와도 관련이 있기 때문에 부작용 없이 더덕의 유익한 효과만을 보장하는데 중요하다. 본 연구에서는 국내산 더덕의 주산지 특성을 구별하기 위해 UPLC-QTOF-MS를 기반으로 하는 대사체 프로파일링과 다변량 통계분석 기법인 PCA 분석을 수행하여 판별모델을 확립하였다. 그 결과 인제(강원도), 횡성(강원도), 무주(전라북도)의 3개 그룹이 PCA와 loading plot 분석결과 tangshenoside I, lancemaside A, lancemaside G는 더덕 주산지를 구별하기 위한 잠재적 대사체 마커들로 제안하였다.

Codonopsis lanceolata (Deoduk) was grown in East Asia, including Korea, China, Japan, and Russia, and the roots of C. lanceolata have been used as functional foods and traditional medicine to treat symptoms of cough, bronchitis, asthma, tuberculosis, and dyspepsia. The phytochemicals of C. lanceolata have been reported such as phenylpropanoids, polyacetylenes, saponins, and flavonoids that are involved in pharmacological effects such as anti-obesity, anti-inflammation, anti-tumor, anti-oxidant, and anti-microbial activities. Selecting marker substances of the main producing area by MS-based metabolomics analysis is important to ensure the beneficial effect of C. lanceolata without side-effects because differences in cultivated areas of plants were related not only to the safety of medicinal plants but also to changes in chemical composition and biological efficacy. In our present study, ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multivariate statistical analysis was applied to recognize the main producing area of C. lanceolata in South Korea. As a result of Principal Component Analysis and loading plot analysis of three groups, Inje (Kangwon-do), Hoengseong (Kangwon-do), and Muju (Jeonlabuk-do), several secondary metabolites of C. lanceolata including tangshenoside I, lancemaside A, and lancemaside G, were suggested as potential marker substances to distinguish the place of main producing area of C. lanceolata.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업인 작물 유용성분 증진 핵심기술 개발(과제번호: PJ01420404) 사업지원에 의해 이루어진 것으로 이에 감사드립니다.

참고문헌

  1. Jiang G, Leem JY (2016) Comparative analysis of cultivation region of Angelica gigas using a GC-MS-based metabolomics approach. Korean J Med Crop Sci 24: 93-100. doi: 10.7783/KJMCS.2016.24.2.93
  2. Park MH, Lee SM, Ko SK, Oh KY, Kim JH, Kim H, Kwon MC, Ryoo IJ, Ahn JS, Ryu HW, Oh SR (2018) Analysis of active metabolites of Sophora flavescens for indoleamine 2, 3-dioxygenase and monoamine oxidases using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Nat Prod Commun 13: 1649-1653. doi: 10.1177/1934578X1801301220
  3. Park SJ, Seong DH, Park DS, Kim SS, Gou JY, Ahn JH, Yoon WB, Lee HY (2009) Chemical compositions of fermented Codonopsis lanceolata. J Korean Soc Food Sci Nutr 38: 396-400. doi: 10.3746/jkfn.2009.38.3.396
  4. Lee CB (1985) Color illustration of korean plants. Hyang mun publishing,Seoul, Korea
  5. Korea forest service (2018) Production of Forest Products. Korea forest service, Daejeon, Korea
  6. Han AY, Lee YS, Kwon S, Lee HS, Lee KW, Seol GH (2018) Codonopsis lanceolata extract prevents hypertension in rats. Phytomedicine 39: 119-124. doi: 10.1016/j.phymed.2017.12.028
  7. Jeong SY, Kang S, Kim DS, Park S (2017) Codonopsis lanceolata water extract increases hepatic insulin sensitivity in rats with experimentally-induced type 2 diabetes. Nutrients 9: 1200. doi: 10.3390/nu9111200
  8. Wang L, Xu ML, Hu JH, Rasmussen SK, Wang MH (2011) Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells-involvement of ROS generation and polyamine depletion. Food Chem Toxicol 49: 149-154. doi: 10.1016/j.fct.2010.10.010
  9. Lee JS, Kim KJ, Kim YH, Kim DB, Shin GH, Cho JH, Kim BK, Lee BY, Lee OH (2014) Codonopsis lanceolata extract prevents diet-induced obesity in C57BL/6 mice. Nutrients 6: 4663-4677. doi: 10.3390/nu6114663
  10. Kim E, Yang WS, Kim JH, Park JG, Kim HG, Ko J, Hong YD, Rho HS, Shin SS, Sung GH, Cho JY (2014) Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages. Mediators Inflamm 2014: 405158. doi: 10.1155/2014/405158
  11. Jung IH, Jang SE, Joh EH, Chung J, Han MJ, Kim DH (2012) Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice. Phytomedicine 20: 84-88. doi: 10.1016/j.phymed.2012.09.005
  12. Hwang BS, Kim JY, Jang M, Kim GC, Park YH, Hwang IG (2018) Quantitative analysis of tangshenoside I and lobetyolin from Korean deoduk (Codonopsis lanceolata). Korean J. Food & Nutr 31: 957-963. doi: 10.9799/ksfan.2018.31.6.957
  13. Xia Y, Liu F, Feng F, Liu W (2017) Characterization, quantitation and similarity evaluation of Codonopsis lanceolata from different regions in China by HPLC-Q-TQF-MS and chemometrics. J Food Compost Anal 62: 134-142. doi: 10.1016/j.jfca.2017.05.009
  14. Lee BW, Ha JH, Shin HG, Jeong SH, Jeon DB, Kim JH, Park JY, Kwon HJ, Jung KS, Lee WS, Kim HY, Kim SH, Jang HJ, Ryu YB, Lee IC (2020) Spiraea prunifolia var. simpliciflora Attenuates Oxidative Stress and Inflammatory Responses in a Murine Model of Lipopolysaccharide-Induced Acute Lung Injury and TNF-α-Stimulated NCI-H292 Cells. Antioxidants 9: 198. doi: 10.3390/antiox9030198.
  15. Ma XQ, Leung AKM, Chan CL, Su T, Li WD, Li SM, Fong DWF, Yu ZL (2014) UHPLC UHD Q-TOF MS/MS analysis of the impact of sulfur fumigation on the chemical profile of Codonopsis Radix (Dangshen). Analyst 139: 505-516. doi: 10.1039/c3an01561k
  16. Tada H, Nakashima T, Kunitake H, Mori K, Tanaka M, Ishimaru K (1996) Polyacetylenes in hairy root cultures of Campanula medium L. J Plant Physiol 147: 617-619. doi: 10.1016/S0176-1617(96)80056-3
  17. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M (2008) Rapid identification of triterpenoid saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J Nat Med 62:423-429. doi: 10.1007/s11418-008-0270-z
  18. Shin EC, Craft BD, Pegg RB, Phillips RD, Eitenmiller RR (2020) Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chemistry 119:1262-1270. doi: 10.1016/j.foodchem.2009.07.058