Acknowledgement
This work was supported by the 2018 Jungwon University Grant.
References
- Chakarov S, Petkova R, Russev GC, Zhelev N (2014) DNA damage and mutation. Types of DNA damage. BioDiscovery 11: e8957
- Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16: 20. doi: 10.1038/nrc.2015.2
- Jang SH, Lim JW, Morio T, Kim H (2012) Lycopene inhibits Helicobacter pylori-induced ATM/ATR-dependent DNA damage response in gastric epithelial AGS cells. Free Radical Biol Med 52: 607-615. doi: 10.1016/j.freeradbiomed.2011.11.010
- Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54: 271-284. doi: 10.1124/pr.54.2.271
- Toshiyuki M, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293-299. doi: 10.1016/0092-8674(95)90412-3
- Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, Banerjee S, Choudhuri T, Mandal D, Bhattacharyya A, Sa G (2008) Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis 13: 771-781. doi: 10.1007/s10495-008-0213-x
- Liu B, Chen Y, Clair DKS (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44: 1529-1535. doi: 10.1016/j.freeradbiomed.2008.01.011
- Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389: 300-305. doi: 10.1038/38525
- Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306-1313. doi: 10.1038/nm1320
- Shibata A, Jeggo P (2014) DNA double-strand break repair in a cellular context. Clin Oncol 26: 243-249. doi: 10.1016/j.clon.2014.02.004
- Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35: 505-513 https://doi.org/10.1016/j.tibs.2010.04.002
- Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415-418. doi: 10.1016/j.tibs.2010.04.002
- Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA repair 3: 959-967. doi: 10.1016/j.dnarep.2004.03.024
- Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213-1226. doi: 10.1016/j.cell.2005.09.038
- Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458: 591-596. doi: 10.1038/nature07849
- Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886-895. doi: 10.1016/s0960-9822(00)00610-2
- Galluzzi L, Kepp O, Kroemer G (2012) Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene 31: 2805-2808. doi: 10.1038/onc.2011.459
- Ji K, Jang NY, Kim YT (2015) Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. J Microbiol Biotechnol 25: 1568-1577. doi: 10.4014/jmb.1501.01077
- Pardau MD, Pereira AS, Apostolides Z, Serem JC, Bester MJ (2017) Antioxidant and anti-inflammatory properties of Ilex guayusa tea preparations: a comparison to Camellia sinensis teas. Food Funct 8: 4601-4610. doi: 10.1039/c7fo01067b
- Vuong QV, Golding JB, Nguyen MH, Roach PD (2012) Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves. J Food Eng 110: 1-8. doi: 10.1016/j.jfoodeng.2011.12.026
- Prathapan A, Singh MK, Anusree S, Kumar DS, Sundaresan A, Raghu K (2011) Antiperoxidative, free radical scavenging and metal chelating activities of Boerhaavia Diffusa L. J Food Biochem 35: 1548-1554. doi: 10.1111/j.1745-4514.2010.00477.x
- Armoskaite V, Ramanauskiene K, Maruska A, Razukas A, Dagilyte A, Baranauskas A, Briedis V (2011) The analysis of quality and antioxidant activity of green tea extracts. J Med Plant Res 5: 811-816. doi: 10.5897/JMPR.9001183
- Ahmad N, Mukhtar H (1999) Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57: 78-83. doi: 10.1111/j.1753-4887.1999.tb06927.x
- Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27: 1588-1596. doi: 10.1002/ptr.5023
- Schroder L, Marahrens P, Koch JG, Heidegger H, Vilsmeier T, PhanBrehm T, Hofmann S, Mahner S, Jeschke U, Richter DU (2019) Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF-7 and MDA-MB-231 breast carcinoma cells. Oncol Rep 41: 387-396. doi: 10.3892/or.2018.6789
- Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci Technol 30: 609-615. doi: 10.1006/fstl.1997.0240
- Van den Berg R, Haenen GR, Van den Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517. doi: 10.1016/S0308-8146(99)00089-8
- Jang TW, Choi JS, Park JH (2020) Protective and inhibitory effects of acteoside from Abeliophyllum distichum Nakai against oxidative DNA damage. Mol Med Rep 22: 2076-2084. doi: 10.3892/mmr.2020.11258
- Park JY, Ji YJ, Seo KH, Lee JY, Kim GS, Kang MH, Lee JH, Jang GY, Kim HD (2021) Heat Treatment Improves UV Photoprotective Effects of Licorice in Human Dermal Fibroblasts. Processes 9: 1040. doi: 10.3390/pr9061040
- Al Amri FS, Hossain MA (2018) Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egypt J Basic Appl Sci 5: 245-251. doi: 10.1016/j.ejbas.2018.09.002
- Harikrishnan H, Jantan I, Haque MA, Kumolosasi E (2018) Antiinflammatory effects of hypophyllanthin and niranthin through downregulation of NF-κB/MAPKs/PI3K-Akt signaling pathways. Inflammation 41: 984-995. doi: 10.1007/s10753-018-0752-4
- Pramanik A, Laha D, Dash SK, Chattopadhyay S, Roy S, Das DK, Pramanik P, Karmakar P (2016) An in vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Mater Sci Eng C Mater Biol Appl 68: 327-337. doi: 10.1016/j.msec.2016.05.014
- Laha D, Pramanik A, Chattopadhyay S, kumar Dash S, Roy S, Pramanik P, Karmakar P (2015) Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Advances 5: 68169-68178. doi: 10.1039/c5ra08110f.
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. methods 25: 402-408. doi: 10.1006/meth.2001.1262
- Pisoschi AM, Cheregi MC, Danet AF (2009) Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules 14: 480-493. doi: 10.3390/molecules14010480
- Prasad KN, Chew LY, Khoo HE, Kong KW, Azlan A, Ismail A (2010) Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. Biomed Res Int 2010: doi: 10.1155/2010/871379
- Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50: 586-621. doi: 10.1002/anie.201000044
- Tomas-Barberan FA, Andres-Lacueva C (2012) Polyphenols and health: current state and progress. J Agric Food Chem 60: 8773-8775. doi: 10.1021/jf300671j
- Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208. doi: 10.2174/0929867053764635
- Sang LX, Chang B, Li XH, Jiang M (2013) Green tea consumption and risk of esophageal cancer: a meta-analysis of published epidemiological studies. Nutr Cancer 65: 802-812. doi: 10.1080/01635581.2013.805423
- Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179-204. doi: 10.1016/j.molcel.2010.09.019
- McNally JP, Millen SH, Chaturvedi V, Lakes N, Terrell CE, Elfers EE, Carroll KR, Hogan SP, Andreassen PR, Kanter J (2017) Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proc Natl Acad Sci USA 114: E4782-E4791. doi: 10.1073/pnas.1703683114
- Kanvah S, Schuster GB (2004) One-electron oxidation of DNA: The effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction. J Am Chem Soc 126: 7341-7344. doi: 10.1021/ja049468i
- Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915-948. doi: 10.1146/annurev.bi.63.070194.004411
- Poulsen HE, Prieme H, Loft S (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7: 9-16
- Hasty P, Vijg J (2002) Aging. Genomic priorities in aging. Science 296: 1250-1251. doi: 10.1126/science.1071808
- Li Z, Yang J, Huang H (2006) Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett 580: 6161-6168. doi: 10.1016/j.febslet.2006.10.016
- Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858-5868. doi: 10.1074/jbc.273.10.5858
- Phillips E, McKinnon P (2007) DNA double-strand break repair and development. Oncogene 26: 7799. doi: 10.1038/sj.onc.1210877
- Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304-6311
- Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309-1312. doi: 10.1126/science.281.5381.1309