DOI QR코드

DOI QR Code

Protective effects of Camellia sinensis fruit and fruit peels against oxidative DNA damage

  • Ahn, Joung-Jwa (Department of Food Science and Technology, Jungwon University) ;
  • Jang, Tae-Won (Department of Pharmaceutical Science, Jungwon University) ;
  • Park, Jae-Ho (Department of Pharmaceutical Science, Jungwon University)
  • Received : 2021.06.16
  • Accepted : 2021.07.16
  • Published : 2021.09.30

Abstract

Camellia sinensis, Green tea, contains phenolic compounds that act to scavenge reactive oxygen species (ROS), such as catechin, epicatechin, etc. In contrast with the tea leaf, the bioactivity of its fruit and the fruit peels remains still unclear. This study focused on the effects of fruit and fruit peels of C. sinensis (FC and PC) against oxidative DNA damage in NIH/3T3 cells. The scavenging effects of FC and PC on ROS were assessed using 1,1-diphenyl-2-picryl hydrazyl or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radicals. The measurement of ROS in cellular levels was conducted by DCFDA reagent and the protein expression of γ-H2AX, H2AX, cleaved caspase-3, p53, and, p-p53 was analyzed by immunoblotting. The gene expressions of p53 and H2AX were assessed using polymerase chain reaction techniques. The major metabolites of FC and PC were quantitatively measured analyzed and the amounts of phenolic compounds and flavonoids in PC were greater than those in FC. Further, PC suppressed ROS production, which protects the oxidative stress-induced DNA damage through reducing H2AX, p53, and caspase-3 phosphorylation. These results refer that the protective effects of FC and PC are mediated by inhibition of p53 signaling pathways, probably via the bioactivity of phenolic compounds. Thus, FC and PC can serve as a potential antioxidant in DNA damage-associated diseases.

Keywords

Acknowledgement

This work was supported by the 2018 Jungwon University Grant.

References

  1. Chakarov S, Petkova R, Russev GC, Zhelev N (2014) DNA damage and mutation. Types of DNA damage. BioDiscovery 11: e8957
  2. Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16: 20. doi: 10.1038/nrc.2015.2
  3. Jang SH, Lim JW, Morio T, Kim H (2012) Lycopene inhibits Helicobacter pylori-induced ATM/ATR-dependent DNA damage response in gastric epithelial AGS cells. Free Radical Biol Med 52: 607-615. doi: 10.1016/j.freeradbiomed.2011.11.010
  4. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54: 271-284. doi: 10.1124/pr.54.2.271
  5. Toshiyuki M, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293-299. doi: 10.1016/0092-8674(95)90412-3
  6. Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, Banerjee S, Choudhuri T, Mandal D, Bhattacharyya A, Sa G (2008) Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis 13: 771-781. doi: 10.1007/s10495-008-0213-x
  7. Liu B, Chen Y, Clair DKS (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44: 1529-1535. doi: 10.1016/j.freeradbiomed.2008.01.011
  8. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389: 300-305. doi: 10.1038/38525
  9. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306-1313. doi: 10.1038/nm1320
  10. Shibata A, Jeggo P (2014) DNA double-strand break repair in a cellular context. Clin Oncol 26: 243-249. doi: 10.1016/j.clon.2014.02.004
  11. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35: 505-513 https://doi.org/10.1016/j.tibs.2010.04.002
  12. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415-418. doi: 10.1016/j.tibs.2010.04.002
  13. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA repair 3: 959-967. doi: 10.1016/j.dnarep.2004.03.024
  14. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213-1226. doi: 10.1016/j.cell.2005.09.038
  15. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458: 591-596. doi: 10.1038/nature07849
  16. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886-895. doi: 10.1016/s0960-9822(00)00610-2
  17. Galluzzi L, Kepp O, Kroemer G (2012) Caspase-3 and prostaglandins signal for tumor regrowth in cancer therapy. Oncogene 31: 2805-2808. doi: 10.1038/onc.2011.459
  18. Ji K, Jang NY, Kim YT (2015) Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. J Microbiol Biotechnol 25: 1568-1577. doi: 10.4014/jmb.1501.01077
  19. Pardau MD, Pereira AS, Apostolides Z, Serem JC, Bester MJ (2017) Antioxidant and anti-inflammatory properties of Ilex guayusa tea preparations: a comparison to Camellia sinensis teas. Food Funct 8: 4601-4610. doi: 10.1039/c7fo01067b
  20. Vuong QV, Golding JB, Nguyen MH, Roach PD (2012) Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves. J Food Eng 110: 1-8. doi: 10.1016/j.jfoodeng.2011.12.026
  21. Prathapan A, Singh MK, Anusree S, Kumar DS, Sundaresan A, Raghu K (2011) Antiperoxidative, free radical scavenging and metal chelating activities of Boerhaavia Diffusa L. J Food Biochem 35: 1548-1554. doi: 10.1111/j.1745-4514.2010.00477.x
  22. Armoskaite V, Ramanauskiene K, Maruska A, Razukas A, Dagilyte A, Baranauskas A, Briedis V (2011) The analysis of quality and antioxidant activity of green tea extracts. J Med Plant Res 5: 811-816. doi: 10.5897/JMPR.9001183
  23. Ahmad N, Mukhtar H (1999) Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57: 78-83. doi: 10.1111/j.1753-4887.1999.tb06927.x
  24. Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27: 1588-1596. doi: 10.1002/ptr.5023
  25. Schroder L, Marahrens P, Koch JG, Heidegger H, Vilsmeier T, PhanBrehm T, Hofmann S, Mahner S, Jeschke U, Richter DU (2019) Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF-7 and MDA-MB-231 breast carcinoma cells. Oncol Rep 41: 387-396. doi: 10.3892/or.2018.6789
  26. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci Technol 30: 609-615. doi: 10.1006/fstl.1997.0240
  27. Van den Berg R, Haenen GR, Van den Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517. doi: 10.1016/S0308-8146(99)00089-8
  28. Jang TW, Choi JS, Park JH (2020) Protective and inhibitory effects of acteoside from Abeliophyllum distichum Nakai against oxidative DNA damage. Mol Med Rep 22: 2076-2084. doi: 10.3892/mmr.2020.11258
  29. Park JY, Ji YJ, Seo KH, Lee JY, Kim GS, Kang MH, Lee JH, Jang GY, Kim HD (2021) Heat Treatment Improves UV Photoprotective Effects of Licorice in Human Dermal Fibroblasts. Processes 9: 1040. doi: 10.3390/pr9061040
  30. Al Amri FS, Hossain MA (2018) Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egypt J Basic Appl Sci 5: 245-251. doi: 10.1016/j.ejbas.2018.09.002
  31. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E (2018) Antiinflammatory effects of hypophyllanthin and niranthin through downregulation of NF-κB/MAPKs/PI3K-Akt signaling pathways. Inflammation 41: 984-995. doi: 10.1007/s10753-018-0752-4
  32. Pramanik A, Laha D, Dash SK, Chattopadhyay S, Roy S, Das DK, Pramanik P, Karmakar P (2016) An in vivo study for targeted delivery of copper-organic complex to breast cancer using chitosan polymer nanoparticles. Mater Sci Eng C Mater Biol Appl 68: 327-337. doi: 10.1016/j.msec.2016.05.014
  33. Laha D, Pramanik A, Chattopadhyay S, kumar Dash S, Roy S, Pramanik P, Karmakar P (2015) Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Advances 5: 68169-68178. doi: 10.1039/c5ra08110f.
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. methods 25: 402-408. doi: 10.1006/meth.2001.1262
  35. Pisoschi AM, Cheregi MC, Danet AF (2009) Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules 14: 480-493. doi: 10.3390/molecules14010480
  36. Prasad KN, Chew LY, Khoo HE, Kong KW, Azlan A, Ismail A (2010) Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. Biomed Res Int 2010: doi: 10.1155/2010/871379
  37. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50: 586-621. doi: 10.1002/anie.201000044
  38. Tomas-Barberan FA, Andres-Lacueva C (2012) Polyphenols and health: current state and progress. J Agric Food Chem 60: 8773-8775. doi: 10.1021/jf300671j
  39. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208. doi: 10.2174/0929867053764635
  40. Sang LX, Chang B, Li XH, Jiang M (2013) Green tea consumption and risk of esophageal cancer: a meta-analysis of published epidemiological studies. Nutr Cancer 65: 802-812. doi: 10.1080/01635581.2013.805423
  41. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179-204. doi: 10.1016/j.molcel.2010.09.019
  42. McNally JP, Millen SH, Chaturvedi V, Lakes N, Terrell CE, Elfers EE, Carroll KR, Hogan SP, Andreassen PR, Kanter J (2017) Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proc Natl Acad Sci USA 114: E4782-E4791. doi: 10.1073/pnas.1703683114
  43. Kanvah S, Schuster GB (2004) One-electron oxidation of DNA: The effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction. J Am Chem Soc 126: 7341-7344. doi: 10.1021/ja049468i
  44. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915-948. doi: 10.1146/annurev.bi.63.070194.004411
  45. Poulsen HE, Prieme H, Loft S (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7: 9-16
  46. Hasty P, Vijg J (2002) Aging. Genomic priorities in aging. Science 296: 1250-1251. doi: 10.1126/science.1071808
  47. Li Z, Yang J, Huang H (2006) Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett 580: 6161-6168. doi: 10.1016/j.febslet.2006.10.016
  48. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858-5868. doi: 10.1074/jbc.273.10.5858
  49. Phillips E, McKinnon P (2007) DNA double-strand break repair and development. Oncogene 26: 7799. doi: 10.1038/sj.onc.1210877
  50. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304-6311
  51. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309-1312. doi: 10.1126/science.281.5381.1309