DOI QR코드

DOI QR Code

Rhodobacter sphaeroides에서 5-aminolevulinic acid 생산에 대한 850 nm 근적외선 발광다이오드 조사 효과

Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in Rhodobacter sphaeroides

  • Mo, SangJoon (Medical Laser Research Center, Dankook University)
  • 투고 : 2021.05.21
  • 심사 : 2021.07.12
  • 발행 : 2021.09.30

초록

광감각제를 이용한 광역학 치료는 필요한 특정 부위에만 빛을 조사하여 치료 효과를 나타내는 부작용이 적은 방법이다. 5-aminolevulinic acid (ALA)는 다양한 생물체에서 합성되는 대표적 광감제로 암진단과 치료를 포함하는 다양한 분야에서 사용되고 있다. 본 연구에서는 다양한 파장의 LED, 유기산 전구체 및 glucose 농도 변화를 통한 Rhodobacter sphaeroides의 최적 성장 조건과 ALA 생산 조건을 확립하기 위한 실험을 진행하였다. 백열등과 동일한 광도 아래에서 Rhodobacter sphaeroides에 850 nm LED 빛을 조사하면 대조군 대비 균주의 성장과 ALA의 생산 농도를 각각 1.5배 및 1.8배 증가시킬 수 있고, 전구체로 pyruvic acid를 첨가한 경우 850 nm 파장의 LED만 조사한 경우 보다 ALA의 생산 농도를 약 2.8배 증가 시켰으며 동일 배양 조건에 40 mM glucose를 첨가하여 배양한 결과 Rhodobacter sphaeroides의 성장은 850 nm 파장의 LED 조사와 pyruvic acid를 첨가한 것에 비해 약 2.9배, ALA의 생산 농도는 약 3.4배 (20 mM) 증가되었다. 건조체 질량당 ALA의 생산은 20 mM과 40 mM glucose에서 대조군 대비 각각 약 1.4배 높은 결과를 나타냈다. 결론적으로 다양한 파장의 LED 중 850 nm 파장의 LED가 Rhodobacter sphaeroides의 성장률 및 ALA의 생산을 최대로 높였으며, 5 mM pyruvic acid와 40 mM glucose의 농도에서 최적의 Rhodobacter sphaeroides 성장과 ALA 생산을 확인하였다.

5-aminolevulinic acid (ALA) is a representative photosensitizer used in numerous fields including cancer diagnosis and treatment. In this study, experiments were conducted to optimize the growth of Rhodobacter sphaeroides and production of ALA through LED irradiation of various wavelengths, addition of organic acid precursors of ALA, and changes in glucose concentration. After 72 h cultivation, the 850 nm wavelength LED irradiated at the same light intensity as the incandescent lamp increased the growth of R. sphaeroides and the production of ALA about 1.5- and 1.8-fold as compared with the control, respectively (p <0.0001 and p <0.0001). As a result of culturing R. sphaeroides by irradiating an LED with a wavelength of 850 nm after adding organic acid to the final concentration of 5 mM in culture medium, the production of ALA was increased about 2.8-fold in medium supplemented with pyruvic acid compared with the control (p <0.0001). In addition, the growth of the strain and the production of ALA were increased about 2.9- and 3.4-fold in medium supplemented with 40 mM glucose compared to the control which added only 5 mM pyruvic acid, respectively (p <0.0001 and p <0.0001). The yield of ALA per cell dry mass was about 1.4 folds higher than that of the control in 20 and 40 mM glucose, respectively (p <0.001). In conclusion, the growth of R. sphaeroides and production of ALA were increased by 850 nm wavelength LED irradiation. It also optimized the growth of R. sphaeroides and production of ALA through organic acid addition and glucose concentration changes.

키워드

과제정보

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(NRF-2020R1A6A1A03043283). 또한 한국기초과학원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임(과제관리번호: 2019R1A6C1010033).

참고문헌

  1. Daniell MD, Hill JS (1991) A history of photodynamic therapy. Aust N Z J Surg 61: 340-348. doi: 10.1111/j.1445-2197.1991.tb00230.x
  2. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74: 656-669. doi: 10.1562/0031-8655(2001)0740656THOPAP2.0.CO2
  3. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90: 889-905. doi: 10.1093/jnci/90.12.889
  4. Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58: 23-29 https://doi.org/10.1007/s00253-001-0858-7
  5. Zhang SJ, Zhang ZX (2004) 5-aminolevulinic acid-based photodynamic therapy in leukemia cell HL60. Photochem Photobiol 79: 545-550. doi: 10.1111/j.1751-1097.2004.tb01274.x
  6. Ma G, Ikeda H, Inokuchi T, Sano K (1999) Effect of photodynamic therapy using 5-aminolevulinic acid on 4-nitroquinoline-1-oxide-induced premalignant and malignant lesions of mouse tongue. Oral Oncol 35: 120-124. doi: 10.1016/S1368-8375(98)00066-9
  7. Sasaki K, Tanaka T, Nishizawa Y, Hayashi M (1990) Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotechnol 32: 727-731 https://doi.org/10.1007/BF00164749
  8. Germaine C-B, Sistrom WR, Stainer RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25-68 https://doi.org/10.1002/jcp.1030490104
  9. Neidle EL, Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175(8): 2292-2303. doi: 10.1128/jb.175.8.2292-2303.1993
  10. Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J (2017) Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 33: 200 https://doi.org/10.1007/s11274-017-2366-7
  11. Sasaki K, Watanabe M, Nishio N (1997) Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter sphaeroides. Biotechnol Lett 19: 421-424 https://doi.org/10.1023/A:1018331824331
  12. Nishikawa S, Watanabe K, Tanaka T, Miyachi N, Hotta Y, Murooka Y (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J Biosci Bioeng 87: 798-804. doi: 10.1016/S1389-1723(99)80156-X
  13. Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria. Seibutu-Kougaku 78: 48-55
  14. Miyachi N, Tanaka T, Nishikawa S, Takeya H, Hotta Y (1998) Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins 2: 342-347
  15. Yang D-S, Park M-W, Lim, MJ Kim SJ, Shin Y, Park CS, Hyun Y, Kang D-K (2009) Optimizing the production of 5-aminolevulinic acid by recombinant Escherichia coli containing the Rhodobacter capsulatus hemA Gene. Kor J Microbiol Biotechnol 37: 153-159
  16. Lou J-W, Zhu L, Wu M-b, Yang L-r, Lin J-p, Cen P-l (2014) High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B 15: 491-499 https://doi.org/10.1631/jzus.B1300283
  17. Yu T-H, Yi Y-C, Shih I-T, Ng I-S (2020) Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA Gene with chaperone in genetic engineered Escherichia coli. Appl Biochem Biotechnol 191(1): 299-312 https://doi.org/10.1007/s12010-019-03178-9
  18. Kim JK, Lee BK (2000) Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aqua Eng 23: 281-293. doi: 10.1016/S0144-8609(00)00057-1
  19. Bertling K, Hurse TJ, Kappler U, Rakic AD (2006) Lasers-an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol Bioeng 94(2): 337-345. doi: 10.1002/bit.20881
  20. Bourget CM (2008) An introduction to light-emitting diodes. Hort Sci 43: 1944-1946. doi: 10.21273/HORTSCI.43.7.1944
  21. Carvalho AP, Silva S O, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89: 1275-1288 https://doi.org/10.1007/s00253-010-3047-8
  22. Kim YU, Kim KS (1981) Studies on the isolation and the application of photosynthetic bacteria. J Kor Agr Chem Soci 24: 132-138
  23. Sistrom WR (1962) The kinetics of the synthesis of photopigments in Rhodopseudomonas spheroids. J Gen Microbiol 28: 607-616. doi: 10.1099/00221287-28-4-607
  24. Mauzerall D, Granick S (1956) The occurrence and determination of delta-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219: 435-446 https://doi.org/10.1016/S0021-9258(18)65809-0
  25. Hwang SY, Choi KM, Lim WJ, Hong BS, Cho HY, Yang HC (1992) Isolation of Rhodocyclus gelatinosus KUP-74 and characterization of δ-aminolevulinic acid production. J Korean Agric Chem Soc 35: 210-217
  26. Kim D, Chang SY, Ahn JC (2008) Effect of growth improvement in photosynthetic bacteria as a function of 880 nm light emitting diode luminosity. J Exp Biomed Sci 14: 91-96
  27. Brasen C, Schonheit P (2001) Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch Microbiol 175: 360-368 https://doi.org/10.1007/s002030100273
  28. Huang J, Fraser ME (2016) Structural basis for the binding of succinate to succinyl-CoA synthetase. Acta Crystallogr D Struct Biol 72(Pt 8): 912-921. doi: 10.1107/S2059798316010044
  29. Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K (2007) Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol Lett 29(5): 773-778 https://doi.org/10.1007/s10529-006-9303-4