DOI QR코드

DOI QR Code

Capture silk scaffold production in the cribellar web spider

  • Yan Sun (Department of Biological Sciences, Dankook University) ;
  • Seung-Min Lee (Department of Biological Sciences, Dankook University) ;
  • Bon-Jin Ku (Department of Biological Sciences, Dankook University) ;
  • Eun-Ah Park (Department of Biological Sciences, Dankook University) ;
  • Myung-Jin Moon (Department of Biological Sciences, Dankook University)
  • 투고 : 2021.04.29
  • 심사 : 2021.07.04
  • 발행 : 2021.12.31

초록

Spider capture silk is a natural scaffolding material that outperforms most synthetic materials in terms of its combination of strength and elasticity. Among the various kinds of silk threads, cribellar thread is the most primitive prey-capturing type of spider web material. We analyzed the functional organization of the sieve-like cribellum spigots and specialized calamistral comb bristles for capture thread production by the titanoecid spider Nurscia albofasciata. The outer cribellar surface is covered with thousands of tiny spigots, and the cribellar plate produces non-sticky threads composed of thousands of fine nanofibers. N. albofasciata cribellar spigots are typically about 10 ㎛ long, and each spigot appears as a long individual shaft with a pagoda-like tiered tip. The five distinct segments comprising each spigot is a defining characteristic of this spider. This segmented and flexible structure not only allows for spigots to bend individually and join with adjacent spigots, but it also enables spigots to draw the silk fibrils from their cribella with rows of calamistral leg bristles to form cribellar prey-capture threads.

키워드

과제정보

This research was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-2014R1A1A2056398) and the Korea government (MSIT) (NRF-2019R1I1A3A01062105).

참고문헌

  1. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair. Nature 405, 681-685 (2000)
  2. R.A. Bott, W. Baumgartner, P. Braunig, F. Menzel, A.C. Joel, Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution. Proc. Biol. Sci. 284, 20170363 (2017). DOI: https://doi.org/10.1098/rspb.2017.0363
  3. J.A. Coddington, in The monophyletic origin of the orb web, ed. by W.A. Shear. Spiders: Webs, behavior and evolution (Stanford, 1986), pp. 319-363
  4. J.A. Coddington, H.W. Levi, Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22, 565-592 (1991)
  5. G.J.G. Davies, D.P. Knight, F. Vollrath, Structure and function of the major ampullate spinning duct of the golden orb-weaver, Nephila edulis. Tissue Cell 45, 306-311 (2013)
  6. M. Denny, The physical properties of spider's silk and their role in the design of orb-webs. J. Exp. Biol. 65, 483-506 (1976)
  7. W.G. Eberhard, Persistent stickiness of cribellar silk. J. Arachnol. 8, 283 (1980)
  8. W.G. Eberhard, F. Pereira, Ultrastructure of cribellate silk of nine species in eight families and possible taxonomic implications (Araneae: Amaurobiidae, Deinopidae, Desidae, Dictynidae, Filistatidae, Hypochilidae, Stiphidiidae, Tengellidae). J. Arachnol. 21, 161-174 (1993)
  9. R.F. Foelix, Biology of Spiders, 3rd edn. (Oxford University Press, Oxford, 2011), pp. 1-432
  10. J. Hajer, L. Foberova, D. Rehakova, Silk-producing organs of ecribellate and cribellate nymphal stages in Austrochilus sp. (Araneae: Austrochilidae): Notes on the transformation of the anterior median spinnerets into the cribellum. Isr. J. Entomol. 47, 21-33 (2017)
  11. A.C. Hawthorn, B.D. Opell, Van der Waals and hygroscopic forces of adhesion generated by spider capture threads. J. Exp. Biol. 206, 3905-3911 (2003)
  12. A.C. Joel, I. Scholz, L. Orth, P. Kappel, W. Baumgartner, (Uloboridae, Morphological adaptation of the calamistrum to the cribellate spinning process in Deinopoidae. Deinopidae). R. Soc. Open Sci. 3, 150617 (2016)
  13. K. Kronenberger, F. Vollrath, Spiders spinning electrically charged nano-fibres. Biol. Lett. 11, 20140813 (2015)
  14. M.J. Moon, E.K. Tillinghast, Silk production after mechanical pulling stimulation in the ampullate silk glands of the barn spider, Araneus cavaticus. Entomol. Res. 34, 123-130 (2004)
  15. M.J. Moon, E.K. Tillinghast, Molt-related changes in the major ampullate silk gland of the barn spider Araneus cavaticus. Anim. Cells Syst. 24, 299-310 (2020)
  16. W. Nentwig, S. Heimer, in Ecological aspects of spider webs, ed. by W. Nentwig. Ecophysiology of spiders (Springer-Verlag, Berlin, 1987), pp. 211-225
  17. B.D. Opell, Ontogenetic changes in cribellum spigot number and cribellar prey capture thread stickiness in the spider family Uloboridae. J. Morphol. 224, 47-56 (1995)
  18. B.D. Opell, Changes in spinning anatomy and thread stickiness associated with the origin of orb-weaving spiders. Biol. J. Linn. Soc. 68, 593-612 (1999)
  19. B.D. Opell, How spider anatomy and thread configuration shape the stickiness of cribellar prey capture threads. J. Arachnol. 30, 10-19 (2002)
  20. B.D. Opell, H.S. Schwend, Adhesive efficiency of spider prey capture threads. Zoology 112, 16-26 (2009)
  21. B.D. Opell, J.S. Sandidge, J.E. Bond, Exploring functional associations between spider cribella and calamistra. J. Arachnol. 28, 43-48 (2000)
  22. B.D. Opell, A.M. Tran, S.E. Karinshak, Adhesive compatibility of cribellar and viscous prey capture threads and its implication for the evolution of orb-weaving spiders. J. Exp. Zool. A. Ecol. Genet. Physiol. 315, 376-384 (2011)
  23. E.A. Park, M.J. Moon, Silk spinning apparatuses in the cribellate spider Nurscia albofasciata (Araneae: Titanoecidae). Anim. Cells Syst. 13, 153-160 (2009)
  24. J.G. Park, M.J. Moon, Fine structural analysis on triad spinning spigots of an orb-web spider's capture threads. Entomol. Res. 44, 121-129 (2014)
  25. H.M. Peters, J. Kovoor, The silk-producing system of Linyphia triangularis (Araneae: Linyphiidae) and some comparisons with Araneidae: Structure, histochemistry and function. Zoomorphology 111, 1-17 (1991)
  26. H.M. Peters, in Fine structure and function of capture threads, ed. by W. Nentwig. Ecophysiology of Spiders (Springer-Verlag, Berlin, 1987), pp. 187-202
  27. J.H. Seo, K.J. Kim, H. Kim, M.J. Moon, Lyriform vibration receptors in the web-building spider, Nephila clavata (Araneidae: Araneae: Arachnida). Entomol. Res. 50, 586-593 (2020)
  28. W.A. Shear, Untangling the evolution of the web. Amer. Sci. 82, 256-266 (1994)
  29. J.P. Suwarno, Roles of fog conductivity and humidity on leakage current of ceramic insulators. J. Eng. Appl. Sci. 4, 282-287 (2009)
  30. F. Vollrath, D.P. Knight, Liquid crystalline spinning of spider silk. Nature 410, 541-548 (2001)