DOI QR코드

DOI QR Code

Morphology and histology of the olfactory organ of two African lungfishes, Protopterus amphibius and P. dolloi (Lepidosirenidae, Dipnoi)

  • Hyun Tae Kim (Department of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Jeonbuk National University) ;
  • Jong Young Park (Department of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Jeonbuk National University)
  • 투고 : 2021.03.25
  • 심사 : 2021.04.07
  • 발행 : 2021.12.31

초록

The olfactory organs of two African lungfishes, Protopterus amphibius and P. dolloi, were investigated using a stereo microscope and a compound light microscope and were described anatomically, histologically, and histochemically. Like other lungfishes, these species present the following general features: i) elongated olfactory chamber (OC), ii) anterior nostril at the ventral tip of the upper lip, iii) posterior nostril on the palate of the oral cavity, iv) lamellae with multiple cell types such as olfactory receptor neurons, supporting cells, basal cells, lymphatic cells, and mucous cells (MC), and vi) vomero-like epithelial crypt (VEC) made of glandular epithelium (GE) and crypt sensory epithelium. Some of these features exhibit differences between species: MCs are abundant in both the lamellar and inner walls of the OC in P. amphibius but occur only in lamellae in P. dolloi. On the other hand, some between feature differences are consistent across species: the GE of both P. amphibius and P. dolloi is strongly positive for Alcian blue (pH 2.5)-periodic acid Schiff (deep violet coloration), and positive with hematoxylin and eosin and with Masson's trichrome (reddish-brown staining), unlike the MCs of the two species which stain dark red with both Alcian blue (pH 2.5)-periodic acid Schiff and Masson's trichrome but respond faintly to hematoxylin and eosin. The differing abundance of MCs in the two lungfishes might reflect different degrees in aerial exposure of the olfactory organ, while the neutral and acid mucopolysaccharide-containing VEC, as indicated by staining properties of the MCs, is evolutionary evidence that P. amphibius and P. dolloi are the closest living relatives to tetrapods, at least in the order Dipnoi.

키워드

과제정보

This research was a part of the project titled "Development of Electronic illustrated book for ornamental fish", funded by the Ministry of Oceans and Fisheries, Korea, G22202004702001.

참고문헌

  1. B.W. Ache, J.M. Young, Olfaction: Diverse species, conserved principles. Neuron 48, 417-430 (2005)
  2. P.C. Barber, G. Raisman, An autoradiographic investigation of the projection of the vomeronasal organ to the accessory olfactory bulb in the mouse. Brain Res. 81, 21-30 (1974)
  3. G. Bertmar, Evolution of vomeronasal organs in vertebrates. Evolution 35, 359-366 (1981)
  4. H. Brinkmann, B. Venkatesh, S. Brenner, A. Meyer, Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl. Acad. Sci. U. S. A. 101, 4900-4905 (2004)
  5. J.H. Derivot, Functional anatomy of the peripheral olfactory system of the African lungfish Protopterus annectens Owen: Macroscopic, microscopic, and morphometric aspects. Am. J. Anat. 169, 177-192 (1984)
  6. H.L. Eisthen, Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Mic. Res Tech. 23, 1-21 (1992)
  7. S. Ferrando, L. Gallus, L. Ghigliotti, M. Vacchi, J. Nielsen, J.S. Christiansen, E. Pisano, Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus. Polar Biol. 39, 1399-1409 (2016)
  8. O. Gona, Mucous glycoproteins of teleostean fish: A comparative histochemical study. Histochem. J. 11, 709-718 (1979)
  9. A. Gonzalez, R. Morona, J.M. Lopez, N. Moreno, G.R. Northcutt, Lungfishes, like tetrapods, possess a vomeronasal system. Front. Neuroanat. 4, 130 (2010)
  10. M. Halpern, L.S. Shapiro, C. Jia, Differential localization of G proteins in the opossum vomeronasal system. Brain Res. 677, 157-161 (1995)
  11. T.J. Hara, in The Behaviour of Teleost Fishes. Role of Olfaction in Fish Behaviour (Springer, US, 1986), pp. 152-176
  12. M.H. Horn, K.C. Riegle, Evaporative water loss and intertidal vertical distribution in relation to body size and morphology of stichaeoid fishes from California. J. Exp. Mar. Biol. Ecol. 50, 273-288 (1981)
  13. Z. Jaafar, E.O. Murdy, Fishes out of Water: Biology and Ecology of Mudskippers (CRC Press, USA, 2017)
  14. D.T. Jones, R.R. Reed, Golf: An olfactory neuron specific-G protein involved in odorant signal transduction. Science 244, 790-795 (1989)
  15. J.M. Jorgensen, The Biology of Lungfishes (Taylor and Francis, Hoboken, 2010)
  16. H.T. Kim, in Ph. D. Dissertation, Chonbuk National University, South Korea. A Comparative Anatomy and Histology of the Olfactory Organ of 17 Fishes in South Korea (2018), p. 175
  17. H.T. Kim, J.Y. Park, Microscopic research on the olfactory organ of the blue spotted mudskipper Boleophthalmus pectinirostris, compared to a related sympatric mudskipper. Ocean Sci. J. 55, 563-572 (2020)
  18. H.T. Kim, S.W. Yun, J.Y. Park, Anatomy, histology, and histochemistry of the olfactory organ of the Korean shuttles mudskipper Periophthalmus modestus. J. Morphol. 280, 1485-1491 (2019)
  19. M. Kuciel, The mechanism of olfactory organ ventilation in Periophthalmus barbarus (Gobiidae, Oxudercinae). Zoomorphology 132, 81-85 (2013)
  20. M. Kuciel, K. Zuwala, U. Satapoomin, Comparative morphology (SEM) of the peripheral olfactory organ in the Oxudercinae subfamily (Gobiidae, Perciformes). Zool. Anz. 252, 424-430 (2013)
  21. P.R. Laming, C.W. Funston, D. Roberts, M.J. Armstrong, Behavioural, physiological and morphological adaptations of the shanny (Blennius pholis) to the intertidal habitat. J. Mar. Biol. Assoc. U. K. 62, 329-338 (1982)
  22. A.M. Loong, K.C. Hiong, S.M.L. Lee, W.P. Wong, S.F. Chew, Y.K. Ip, Ornithine-urea cycle and urea synthesis in African lungfishes, Protopterus aethiopicus and Protopterus annectens, exposed to terrestrial conditions for six days. J. Exp. Zool. 303, 354-365 (2005)
  23. J. Marshall, S. Collin, N. Hart, H. Bailes, in The Biology of Lungfishes. Vision in Lungfish (Science Publishers Inc, USA, 2011), pp. 447-476
  24. S. Nakamuta, N. Nakamuta, K. Taniguchi, K. Taniguchi, Localization of the primordial vomeronasal organ and its relationship to the associated gland in lungfish. J. Anat. 222, 481-485 (2013)
  25. G.A. Nevitt, Do fish sniff? A new mechanism of olfactory sampling in pleuronectid flounders. J. Exp. Biol. 157, 1-18 (1991)
  26. C. Nowack, A. Wohrmann-Repenning, New anatomical analyses suggest a pumping mechanism for the vomeronasal organ in anurans. Copeia 2009, 1-6 (2009)
  27. A.P. Sanchez, M.L. Glass, Effects of environmental hypercapnia on pulmonary ventilation of the south American lungfish. J. Fish Biol. 58, 1181-1189 (2001)
  28. M.D. Sayer, Adaptations of amphibious fish for surviving life out of water. Fish Fish. 6, 186-211 (2005)
  29. K.L. Shephard, Functions for fish mucus. Rev. Fish Biol. Fish. 4, 401-429 (1994)
  30. B. Theisen, Ultrastructure of the olfactory epithelium in the Australian lungfish Neoceratodus forsteri. Acta Zool. 53, 205-218 (1972)
  31. K.B. Tierney, in Handbook of Olfaction and Gustation: Modern Perspectives, ed. by R. L. Doty. Olfaction in Aquatic Vertebrates (Wiley Blackwell, Hoboken, 2015), pp. 547-564
  32. D. Trotier, K.B. Doving, Anatomical description of a new organ in the nose of domesticated animals' by Ludvig Jacobson (1813). Chem. Senses 23, 743-754 (1998)
  33. C. Wittmer, C. Nowack, Epithelial crypts: A complex and enigmatic olfactory organ in African and south American lungfish (Lepidosireniformes, Dipnoi). J. Morphol. 278, 791-800 (2017)
  34. M. Yamamoto, in Chemoreception in Fishes, ed. by T. J. Hara. Comparative Morphology of the Peripheral Olfactory Organs in Teleosts (Elsevier, Amsterdam, 1982), pp. 39-59