References
- Abdullah, S.S., Hashemi, S.H., Hussein, N.A. and Nazemnezhad, R. (2020), "Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium", J. Therm. Stress., 43(10), 1316-1332. https://doi.org/10.1080/01495739.2020.1780175.
- Akkoca, S., Bagdatli, S.M. and Togun, N.K. (2021), "Linear vibration movements of the mid-supported micro beam", J. Facult. Eng. Arch. Gazi Univ., 36(2), 1089-1103. https://doi.org/10.17341/gazimmfd.734809
- Arda, M. and Aydogdu, M. (2018), "Longitudinal magnetic field effect on torsional vibration of carbon nanotubes", J. Comput. Appl. Mech., 49(2), 304-313. https://doi.org/10.22059/jcamech.2018.269982.344.
- Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29, 579-590. https://doi.org/10.12989/scs.2018.29.5.579.
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Baghani, M., Mohammadi, M. and Farajpour, A. (2016), "Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy", Int. J. Appl. Mech., 8, 4. https://doi.org/10.1142/S1758825116500484.
- Bakhtiari, I., Behrouz, S.J. and Rahmani, O. (2020), "Nonlinear forced vibration of a curved micro beam with a surface-mounted light-driven actuator", Commun. Nonlin. Sci. Numer. Simul., 91, 105420. https://doi.org/10.1016/j.cnsns.2020.105420.
- Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1719507.
- Behrouz, S.J., Rahmani, O. and Hossein, S.A. (2019), "On nonlinear forced vibration of nano cantilever-based biosensor via couple stress theory", Mech. Syst. Signal Pr., 128, 19-36. https://doi.org/10.1016/j.ymssp.2019.03.020.
- Cajic, M., Lazarevic, L., Karlici, D., Sun, H. and Liu, X. (2018), "Fractional-order model for the vibration of a nanobeam influenced by an axial magnetic field and attached nanoparticles", Acta Mech., 229, 4791-4815. https://doi.org/10.1007/s00707-018-2263-7.
- Cajic, M.S., Lazarevic, M.P. and Karlicic, D.Z. (2015), "Nonlocal frequency analysis of a nanobeam under axial magnetic field using finite element method", Proceedings of the 8th GRACM International Congress on Computational Mechanics, July.
- Chang, T. (2015), "Large amplitude free vibration of nanobeams subjected to magnetic field based on nonlocal elasticity theory", Appl. Mech. Mater., 764-765, 1199-1203, https://doi.org/10.4028/www.scientific.net/AMM.764-765.1199.
- Chang, T.P. (2016) "Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory", J. Vibroeng., 18(3), http://doi.org/10.21595/jve.2015.16751.
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2017), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177/1077546317744719.
- Ebrahimi, F. and Barati, M.R. (2018), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24, 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
- Ebrahimi, F. and Barati, M.R. (2018), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43, 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Hosseini, M. and Goughari, M.S. (2016), "Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field", Appl. Math. Model., 40(4), 2560-2576. https://doi.org/10.1016/j.apm.2015.09.106.
- Jandaghian, A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
- Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electrothermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25, 035023. https://doi.org/10.1088/0964-1726/25/3/035023.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach", Eur. Phys. J. Plus, 135, 164. https://doi.org/10.1140/epjp/s13360-020-00176-3
- Karlicic, D., Jovanovic, D., Kozic, P. and Cajic, M. (2015), "Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium". J. Mech. Mater. Struct., 10, 43-62. https://doi.org/10.2140/jomms.2015.10.43.
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems", J. Appl. Phys., 111, 113511. http://doi.org/10.1063/1.4720084
- Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley, New York, USA.
- Rahmani, O. and Asemani, S.S. (2020), "Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories", Struct. Eng. Mech., 74(2), 175-187. http://doi.org/10.12989/sem.2020.74.2.175.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2017), "An analytical solution for bending, buckling, and free vibration of FG nanobeam lying on Winkler-Pasternak elastic foundation using different nonlocal higher order shear deformation beam theories", Scientia Iranica., 24(3), 1635-1653. https://doi.org/10.24200/sci.2017.4141
- Sari, M.S. (2016), "Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation", Microsyst. Technol., 23(8), 3319-3330. https://doi.org/10.1007/s00542-016-3161-3.
- Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M. and Eftekhari S.A. (2018), "Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: A comparative study on modified couple stress theory and nonlocal elasticity theory", J. Intel. Mater. Syst. Struct., 29(11), 2492-2507. https://doi.org/10.1177/1045389X18770875.
- Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B: Eng., 154(1), 492-506. https://doi.org/10.1016/j.compositesb.2018.09.011.
- Stamenkovic, M.B., Karlicic, D., Janevski, G. and Kozic, P. (2016), "Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field", J. Mech. Mater. Struct., 11(3), 279-307. https://doi.org/10.2140/jomms.2016.11.279.
- Sun, X., Hong, Y., Dai, H. and Wang, L. (2017), "Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field", Acta Mechanica Solida Sinica, 30(5), 465-473. https://doi.org/10.1016/j.camss.2017.08.002.
- Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.
- Tang, Y. and Yang, T. (2018), "Bi-directional functionally graded nanotubes: fluid conveying dynamics", Int. J. Appl. Mech., 10(4), 1850041. https://doi.org/10.1142/S1758825118500412.
- Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B, 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021) "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746.
- Tang, Y., Wang, T. and Zheng, Y. (2020), "Thermal effect on wave propagation behavior of viscoelastic carbon nanotubes conveying fluid with the spinning and longitudinal motions", Mod. Phys. Lett. B, 35(2), 2150052. https://doi.org/10.1142/S0217984921500524.
- Tang, Y., Zhong, S., Yang, T. and Ding, Q. (2019), "Interaction between thermal field and two-dimensional functionally graded materials: A structural mechanical example", Int. J. Appl. Mech., 11(10), 1950099. https://doi.org/10.1142/S1758825119500996.
- Yang, T., Tang, Y., Lid, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
- Yapanmis, B.E., Bagdatli, S.M. and Togun, N. (2020), "Investigation of linear vibration behavior of middle supported nanobeam", El-Cezeri J. Sci. Eng., 7(3), 1450-1459. https://doi.org/10.31202/ecjse.741269.
- Zhao, D., Liu, Y. and Tang, Y. (2018), "Effects of magnetic field on size sensitivity of nonlinear vibration of embedded nanobeams", Mech. Adv. Mater. Struct., 26(11), 948-956. https://doi.org/10.1080/15376494.2018.1432783
- Zhen, Y., Wen, S. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E: Low Dimens. Syst. Nanostruct., 105, 116-124. https://doi.org/10.1016/j.physe.2018.09.005.