참고문헌
- Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Fritsch, F.N. and Carlson, R.E. (1980), "TMonotone piecewise cubic interpolation", SIAM J. Numer. Anal., 17(2), 238-246. https://doi.org/10.1137/071702.
- Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin Wall. Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014.
- Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.
- Halpin Affdl, J.C and Kardos, K.L (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
- Hamed, M.A, Sadoun, A.M. and Eltaher, M.A (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Jamshidi, M. and Arghavani, J. (2017), "Optimal design of two-dimensional porosity distribution in shear deformable functionally graded porous beams for stability analysis", Thin Wall. Struct., 120, 81-90. http://dx.doi.org/10.1016/j.tws.2017.08.027.
- Jasion, P., Magnucka-Blandzi, E., Szyc, W. and Magnucki, K. (2012), "Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core", Thin Wall. Struct., 61, 154-161. https://doi.org/10.1016/j.tws.2012.04.013.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Lieu, Q.X. and Lee, J. (2019), "An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates", Comput. Meth. Appl. Mech. Eng., 343, 407-437. https://doi.org/10.1016/j.cma.2018.08.017.
- Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theo. Appl. Mech., 42(4), 859-868.
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing.
- Mirjavadi, S.S., Forsat, M., Yahya, Z., Barati, M., Jayasimha, A.N. and Hamouda, A. (2020), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. http://doi.org/10.12989/sem.2020.75.6.701.
- Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
- Ochoa, O.O. and Reddy, J.N. (1992), "Finite element analysis of composite laminates", Finite Element Analysis of Composite Laminates, Springer, Dordrecht.
- Park, S., Yoo, H.H. and Chung, J. (2013), "Vibrations of an axially moving beam with deployment or retraction", AIAA J., 51(3), 686-696. https://doi.org/10.2514/1.J052059.
- Phung-van, P., Ferreira, A.J.M. and Thai, C.H. (2020), "Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates", Compos. Struct., 239, 112029. https://doi.org/10.1016/j.compstruct.2020.112029.
- Phung-van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
- Phung-van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019b), "An isogeometric approach of static and free vibration analyses for porous FG nanoplates", Eur. J. Mech.-A/Solid., 78, 103851. https://doi.org/10.1016/j.euromechsol.2019.103851.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
- Roberts, A.P. and Garboczi, E.J. (2002), "Computation of the linear elastic properties of random porous materials with a wide variety of microstructure", Proc. Roy. Soc. London. Ser. A: Math. Phys. Eng. Sci., 458, 1033-1054. https://doi.org/10.1098/rspa.2001.0900
- Shokrieh, M.M., Esmkhani, M., Shokrieh, Z. and Zhao, Z. (2014), "Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics-micromechanics method", Comput. Mater. Sci., 92, 444-450. https://doi.org/10.1016/j.commatsci.2014.06.002.
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotubereinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.