DOI QR코드

DOI QR Code

Wave propagation analysis of porous functionally graded curved beams in the thermal environment

  • Xu, Xinli (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Zhang, Chunwei (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Musharavati, Farayi (Department of Mechanical and Industrial Engineering, Qatar University) ;
  • Sebaey, Tamer A. (Engineering Management Department, College of Engineering, Prince Sultan University) ;
  • Khan, Afrasyab (Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University)
  • Received : 2020.10.30
  • Accepted : 2021.06.23
  • Published : 2021.09.25

Abstract

In the present paper, wave propagation behavior of porous temperature-dependent functionally graded curved beams within the thermal environment is analyzed for the first time. A recently-developed method is utilized which considers the reciprocal effect of mass density and Young's modulus in order to explore the influence of porosity. Three different types of temperature variation (uniform temperature change (UTC), linear temperature change (LTC), sinusoidal temperature change (STC)) are employed to study the effect of various thermal loads. Euler-Bernoulli beam theory, also known as classic beam theory is implemented in order to derive kinetic and kinematic relations, and then Hamilton's principle is used to obtain governing equations of porous functionally graded curved beams. The obtained governing equations are analytically solved. Eventually, the influences of various parameters such as wave number, porosity coefficient, various types of temperature change and power index are covered and indicated in a set of illustrations.

Keywords

Acknowledgement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  2. Aksoy, H. and Senocak, E. (2009), "Wave propagation in functionally graded and layered materials", Finite Elem. Anal. Des., 45(12), 876-891. https://doi.org/10.1016/j.finel.2009.06.025.
  3. Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlin. Dyn., 66(3), 251. https://doi.org/10.1007/s11071-011-0049-8.
  4. Alkhedher, M., Talebizadehsardari, P., Eyvazian, A., Khan, A. and Farouk, N. (2021), "Wave dispersion analysis of fluid conveying nanocomposite shell reinforced by mwcnts considering the effect of waviness and agglomeration efficiency", Polym., 13(1), 153. https://doi.org/10.3390/polym13010153.
  5. Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
  6. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  7. Babaei, H., Eslami, M. and Khorshidvand, A. (2020), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stress., 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
  8. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707.
  9. Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluid. Struct., 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
  10. Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
  11. Chu, F., He, J., Wang, L. and Zhong, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
  12. Chu, F., Wang, L., Zhong, Z. and He, J. (2014), "Hermite radial basis collocation method for vibration of functionally graded plates with in-plane material inhomogeneity", Comput. Struct., 142, 79-89. https://doi.org/10.1016/j.compstruc.2014.07.005.
  13. Daneshjou, K., Bakhtiari, M. and Tarkashvand, A. (2017), "Wave propagation and transient response of a fluid-filled FGM cylinder with rigid core using the inverse Laplace transform", Eur. J. Mech.-A/Solid., 61, 420-432. https://doi.org/10.1016/j.euromechsol.2016.10.007.
  14. Doyle, J.F. (1989), Wave Propagation in Structures. in Wave Propagation in Structures, Springer, New York, NY.
  15. Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(23), 4457-4469. https://doi.org/10.1177/0954406216668912.
  16. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
  17. Ebrahimi, F. and Seyfi, A. (2020), "Propagation of flexural waves in anisotropic fluid-conveying cylindrical shells", Symmetry, 12(6), 901. https://doi.org/10.3390/sym12060901.
  18. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
  19. Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019b), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134(5), 226. https://doi.org/10.1140/epjp/i2019-12547-8.
  20. Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Rand. Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
  21. Ehyaei, J., Farazmandnia, N. and Jafari, A. (2017), "Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory", Struct. Eng. Mech., 63(4), 471-480. https://doi.org/10.12989/sem.2017.63.4.471.
  22. Gao, N., Guo, X., Deng, J., Cheng, B. and Hou, H. (2021), "Elastic wave modulation of double-leaf ABH beam embedded mass oscillator", Appl. Acoust., 173, 107694. https://doi.org/10.1016/j.apacoust.2020.107694.
  23. Gao, N., Tang, L., Deng, J., Lu, K., Hou, H. and Chen, K. (2021), "Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge", Appl. Acoust., 175, 107845. https://doi.org/10.1016/j.apacoust.2020.107845.
  24. Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906.
  25. He, X.T., Li, X., Li, W.M. and Sun, J.Y. (2019), "Bending analysis of functionally graded curved beams with different properties in tension and compression", Arch. Appl. Mech., 89(9), 1973-1994. https://doi.org/10.1007/s00419-019-01555-8
  26. Huynh, T.A., Luu, A.T. and Lee, J. (2017), "Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach", Meccanica, 52(11-12), 2527-2546. https://doi.org/10.1007/s11012-016-0603-z.
  27. Keleshteri, M. and Jelovica, J. (2020), "Nonlinear vibration behavior of functionally graded porous cylindrical panels", Compos. Struct., 239, 112028. https://doi.org/10.1016/j.compstruct.2020.112028.
  28. Kumar, R., Lal, A., Singh, B. and Singh, J. (2019), "New transverse shear deformation theory for bending analysis of FGM plate under patch load", Compos. Struct., 208, 91-100. https://doi.org/10.1016/j.compstruct.2018.10.014.
  29. Kurtaran, H. (2015), "Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method", Compos. Struct., 131, 821-831. https://doi.org/10.1016/j.compstruct.2015.06.024.
  30. Li, C., Han, Q., Liu, Y. and Xiao, D. (2017), "Guided wave propagation in rotating functionally graded annular plates", Acta Mechanica, 228(3), 1083-1095. https://doi.org/10.1007/s00707-016-1752-9.
  31. Lim, C.W., Yang, Q. and Lu, C. (2009), "Two-dimensional elasticity solutions for temperature-dependent in-plane vibration of FGM circular arches", Compos. Struct., 90(3), 323-329. https://doi.org/10.1016/j.compstruct.2009.03.014.
  32. Malekzadeh, P., Haghighi, M.G. and Atashi, M. (2010), "Out-of-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040.
  33. Masjedi, P.K., Maheri, A. and Weaver, P.M. (2019), "Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation", Appl. Math. Model., 76, 938-957. https://doi.org/10.1016/j.apm.2019.07.018.
  34. Mohamed, N., Eltaher, M., Mohamed, S. and Seddek, L. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Nonlin. Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.
  35. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
  36. Parandvar, H. and Farid, M. (2016), "Large amplitude vibration of FGM plates in thermal environment subjected to simultaneously static pressure and harmonic force using multimodal FEM", Compos. Struct., 141, 163-171. https://doi.org/10.1016/j.compstruct.2016.01.044.
  37. Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol., 19(3), 1608-1625. https://doi.org/10.1016/j.jestch.2016.05.014s.
  38. Piovan, M.T., Domini, S. and Ramirez, J.M. (2012), "In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams", Compos. Struct., 94(11), 3194-3206. https://doi.org/10.1016/j.compstruct.2012.04.032.
  39. Pradhan, S. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  40. Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.
  41. Rajasekaran, S. (2014), "Analysis of curved beams using a new differential transformation based curved beam element", Meccanica, 49(4), 863-886. https://doi.org/10.1007/s11012-013-9835-3.
  42. Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Des., 2(1-2), 117-128. https://doi.org/10.1007/s10999-005-4446-3.
  43. Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  44. Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
  45. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  46. Sofiyev, A. (2012), "The non-linear vibration of FGM truncated conical shells", Compos. Struct., 94(7), 2237-2245. https://doi.org/10.1016/j.compstruct.2012.02.005.
  47. Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Therm. Stress., 39(1), 11-26. https://doi.org/10.1080/01495739.2015.1120627.
  48. Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
  49. Wang, L., Liu, Y., Zhou, Y. and Yang, F. (2021), "Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity", Int. J. Mech. Sci., 193, 106165. https://doi.org/10.1016/j.ijmecsci.2020.106165.
  50. Wang, X., Jin, C. and Yuan, Z. (2020), "Free vibration of FGM annular sectorial plates with arbitrary boundary supports and large sector angles", Mech. Bas. Des. Struct. Mach., 1-21. https://doi.org/10.1080/15397734.2020.1717342.
  51. Yousefi, A. and Rastgoo, A. (2011), "Free vibration of functionally graded spatial curved beams", Compos. Struct., 93(11), 3048-3056. https://doi.org/10.1016/j.compstruct.2011.04.024.
  52. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
  53. Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos. Part B: Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080.
  54. Zhao, X., Chen, B., Li, Y., Zhu, W., Nkiegaing, F. and Shao, Y. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.
  55. Zhao, X., Zhu, W. and Li, Y. (2020), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.
  56. Zok, F.W. and Levi, C.G. (2001), "Mechanical properties of porous-matrix ceramic composites", Adv. Eng. Mater., 3(1-2), 15-23. https://doi.org/10.1002/1527-2648(200101)3:1/2%3C15::AID-ADEM15%3E3.0.CO;2-A.