Acknowledgement
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
References
- Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Aksoy, H. and Senocak, E. (2009), "Wave propagation in functionally graded and layered materials", Finite Elem. Anal. Des., 45(12), 876-891. https://doi.org/10.1016/j.finel.2009.06.025.
- Alijani, F., Bakhtiari-Nejad, F. and Amabili, M. (2011), "Nonlinear vibrations of FGM rectangular plates in thermal environments", Nonlin. Dyn., 66(3), 251. https://doi.org/10.1007/s11071-011-0049-8.
- Alkhedher, M., Talebizadehsardari, P., Eyvazian, A., Khan, A. and Farouk, N. (2021), "Wave dispersion analysis of fluid conveying nanocomposite shell reinforced by mwcnts considering the effect of waviness and agglomeration efficiency", Polym., 13(1), 153. https://doi.org/10.3390/polym13010153.
- Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
- Babaei, H., Eslami, M. and Khorshidvand, A. (2020), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stress., 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
- Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707.
- Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluid. Struct., 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
- Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B: Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
- Chu, F., He, J., Wang, L. and Zhong, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
- Chu, F., Wang, L., Zhong, Z. and He, J. (2014), "Hermite radial basis collocation method for vibration of functionally graded plates with in-plane material inhomogeneity", Comput. Struct., 142, 79-89. https://doi.org/10.1016/j.compstruc.2014.07.005.
- Daneshjou, K., Bakhtiari, M. and Tarkashvand, A. (2017), "Wave propagation and transient response of a fluid-filled FGM cylinder with rigid core using the inverse Laplace transform", Eur. J. Mech.-A/Solid., 61, 420-432. https://doi.org/10.1016/j.euromechsol.2016.10.007.
- Doyle, J.F. (1989), Wave Propagation in Structures. in Wave Propagation in Structures, Springer, New York, NY.
- Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(23), 4457-4469. https://doi.org/10.1177/0954406216668912.
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
- Ebrahimi, F. and Seyfi, A. (2020), "Propagation of flexural waves in anisotropic fluid-conveying cylindrical shells", Symmetry, 12(6), 901. https://doi.org/10.3390/sym12060901.
- Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019a), "Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment", Adv. Nano Res., 7(5), 325-335. https://doi.org/10.12989/anr.2019.7.5.325.
- Ebrahimi, F., Seyfi, A. and Dabbagh, A. (2019b), "A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams", Eur. Phys. J. Plus, 134(5), 226. https://doi.org/10.1140/epjp/i2019-12547-8.
- Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Rand. Complex Media, 1-19. https://doi.org/10.1080/17455030.2020.1847359.
- Ehyaei, J., Farazmandnia, N. and Jafari, A. (2017), "Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory", Struct. Eng. Mech., 63(4), 471-480. https://doi.org/10.12989/sem.2017.63.4.471.
- Gao, N., Guo, X., Deng, J., Cheng, B. and Hou, H. (2021), "Elastic wave modulation of double-leaf ABH beam embedded mass oscillator", Appl. Acoust., 173, 107694. https://doi.org/10.1016/j.apacoust.2020.107694.
- Gao, N., Tang, L., Deng, J., Lu, K., Hou, H. and Chen, K. (2021), "Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge", Appl. Acoust., 175, 107845. https://doi.org/10.1016/j.apacoust.2020.107845.
- Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906.
- He, X.T., Li, X., Li, W.M. and Sun, J.Y. (2019), "Bending analysis of functionally graded curved beams with different properties in tension and compression", Arch. Appl. Mech., 89(9), 1973-1994. https://doi.org/10.1007/s00419-019-01555-8
- Huynh, T.A., Luu, A.T. and Lee, J. (2017), "Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach", Meccanica, 52(11-12), 2527-2546. https://doi.org/10.1007/s11012-016-0603-z.
- Keleshteri, M. and Jelovica, J. (2020), "Nonlinear vibration behavior of functionally graded porous cylindrical panels", Compos. Struct., 239, 112028. https://doi.org/10.1016/j.compstruct.2020.112028.
- Kumar, R., Lal, A., Singh, B. and Singh, J. (2019), "New transverse shear deformation theory for bending analysis of FGM plate under patch load", Compos. Struct., 208, 91-100. https://doi.org/10.1016/j.compstruct.2018.10.014.
- Kurtaran, H. (2015), "Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method", Compos. Struct., 131, 821-831. https://doi.org/10.1016/j.compstruct.2015.06.024.
- Li, C., Han, Q., Liu, Y. and Xiao, D. (2017), "Guided wave propagation in rotating functionally graded annular plates", Acta Mechanica, 228(3), 1083-1095. https://doi.org/10.1007/s00707-016-1752-9.
- Lim, C.W., Yang, Q. and Lu, C. (2009), "Two-dimensional elasticity solutions for temperature-dependent in-plane vibration of FGM circular arches", Compos. Struct., 90(3), 323-329. https://doi.org/10.1016/j.compstruct.2009.03.014.
- Malekzadeh, P., Haghighi, M.G. and Atashi, M. (2010), "Out-of-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040.
- Masjedi, P.K., Maheri, A. and Weaver, P.M. (2019), "Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation", Appl. Math. Model., 76, 938-957. https://doi.org/10.1016/j.apm.2019.07.018.
- Mohamed, N., Eltaher, M., Mohamed, S. and Seddek, L. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Nonlin. Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.
- Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
- Parandvar, H. and Farid, M. (2016), "Large amplitude vibration of FGM plates in thermal environment subjected to simultaneously static pressure and harmonic force using multimodal FEM", Compos. Struct., 141, 163-171. https://doi.org/10.1016/j.compstruct.2016.01.044.
- Paul, A. and Das, D. (2016), "Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness", Eng. Sci. Technol., 19(3), 1608-1625. https://doi.org/10.1016/j.jestch.2016.05.014s.
- Piovan, M.T., Domini, S. and Ramirez, J.M. (2012), "In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams", Compos. Struct., 94(11), 3194-3206. https://doi.org/10.1016/j.compstruct.2012.04.032.
- Pradhan, S. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.
- Rajasekaran, S. (2014), "Analysis of curved beams using a new differential transformation based curved beam element", Meccanica, 49(4), 863-886. https://doi.org/10.1007/s11012-013-9835-3.
- Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Des., 2(1-2), 117-128. https://doi.org/10.1007/s10999-005-4446-3.
- Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
- Sofiyev, A. (2012), "The non-linear vibration of FGM truncated conical shells", Compos. Struct., 94(7), 2237-2245. https://doi.org/10.1016/j.compstruct.2012.02.005.
- Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Therm. Stress., 39(1), 11-26. https://doi.org/10.1080/01495739.2015.1120627.
- Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
- Wang, L., Liu, Y., Zhou, Y. and Yang, F. (2021), "Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity", Int. J. Mech. Sci., 193, 106165. https://doi.org/10.1016/j.ijmecsci.2020.106165.
- Wang, X., Jin, C. and Yuan, Z. (2020), "Free vibration of FGM annular sectorial plates with arbitrary boundary supports and large sector angles", Mech. Bas. Des. Struct. Mach., 1-21. https://doi.org/10.1080/15397734.2020.1717342.
- Yousefi, A. and Rastgoo, A. (2011), "Free vibration of functionally graded spatial curved beams", Compos. Struct., 93(11), 3048-3056. https://doi.org/10.1016/j.compstruct.2011.04.024.
- Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
- Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos. Part B: Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080.
- Zhao, X., Chen, B., Li, Y., Zhu, W., Nkiegaing, F. and Shao, Y. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.
- Zhao, X., Zhu, W. and Li, Y. (2020), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.
- Zok, F.W. and Levi, C.G. (2001), "Mechanical properties of porous-matrix ceramic composites", Adv. Eng. Mater., 3(1-2), 15-23. https://doi.org/10.1002/1527-2648(200101)3:1/2%3C15::AID-ADEM15%3E3.0.CO;2-A.