DOI QR코드

DOI QR Code

A mechanical approach for mosquito fascicle under the influence of mechanical forces with medical applications

  • Alkenani, Naser (Department of Biological Sciences, Faculty of Science, King Abdulaziz University) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Metwally, Ahmed M. (Mathematics and Theoretical Physics Department, NRC, AEA) ;
  • Alwabli, Afaf S. (Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University) ;
  • Al-Solami, Habeeb M. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
  • Received : 2020.03.20
  • Accepted : 2021.07.13
  • Published : 2021.09.25

Abstract

In the present paper, an analysis of elastic stability for mosquito fascicle with the elastic foundation is investigated by the variational iteration method. A mathematical model is established for the mosquito fascicle for the associated clamped and free boundary conditions. Results attained expert the stability condition of mosquito fascicle for given parameters. Design guidelines for the dynamically stable microneedle are developed and critically debated. A uniform homogeneous mosquito fascicle is considered to be restrained by labium along its length. The restraint considered in this work is an elastic foundation model by labium, and it is of great interest to bioengineering and foundation engineers. An analytical solution is not a simple procedure since the equations are highly nonlinear. This study presents the application of the variational iteration method for obtaining exact solutions for continuously restrained mosquito fascicle. The research proves that the variational iteration method is a very efficient and promising approach to understand the probing behavior of mosquitoes and the process of penetration.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G-488-130-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A. Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Abulwafa, E.M., Abdou, M.A. and Mahmoud, A.A. (2007), "Nonlinear fluid flows in pipe-like domain problem using variational-iteration method", Chaos Soliton. Fract., 32(4), 1384-1397. https://doi.org/10.1016/j.chaos.2005.11.050.
  3. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.Sh. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  4. Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., ... & Kirsch, R.F. (2017), "Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration", Lancet, 389(10081), 1821-1830. https://doi.org/10.1016/s0140-6736(17)30601-3.
  5. Al-Basyouni, K.S. and Mahmoud, S.R. (2021), "Effect of the magnetic field, initial stress, rotation, and nonhomogeneity on stresses in orthotropic material", Phys. Mesomech., 24(3), 303-310. https://doi.org/10.1134/S1029959921030085.
  6. Al-Basyouni, K.S., Dakhel, B., Ghandourah, E. and Algarni, A. (2020a), "An analytical solution for the problem of stresses in magneto-piezoelectric thermoelastic material under the influence of rotation", Phys. Mesomech., 23(4), 362-368. https://doi.org/10.1134/S1029959920040116.
  7. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  8. Alwabli, A.S., Kaci, A., Bellifa, H., Bousahla, A.A., Tounsi, A., Alzahrani, D.A., ... & Hussain, M. (2021), "The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory", Adv. Nano Res., 10(1), 15. http://doi.org/10.12989/anr.2021.10.1.015.
  9. Atay, M. and Coskun, S. (2008), "Effects of nonlinearity on the variational iteration solutions of nonlinear two-point boundary value problems with comparison with respect to finite element analysis", Math. Prob. Eng., 2008, Article ID 857296. https://doi.org/10.1155/2008/857296.
  10. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  11. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  12. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., ... & Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  13. Bensattalah, T., Zidour, M., Hassaine Daouadji, T. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  14. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  15. Bolotin, V.V. (1964), Dynamic Stability of Elastic Systems, Holden Day, San Francisco, USA.
  16. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  17. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  18. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla; A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  19. Collins, F.H. (2006), "A female Aedes aegypti mosquito". http://phil.cdc.gov/phil/details_linked.asp?pid=9261.
  20. Coskun, S.B. and Atay, M.T. (2007), "Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis", Math. Prob. Eng., 2007, Article ID 042072. https://doi.org/10.1155/2007/42072.
  21. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  22. Fradin, M.S. (1998), "Mosquitoes and mosquito repellents: A clinician's guide", Ann. Intern. Medic., 128(11), 931. https://doi.org/10.7326/0003-4819-128-11-199806010-00013.
  23. Ghandourah, E. (2021), "Nonlocal elasticity theory for the mechanical behavior of protein microtubules", Phys. Mesomech., 24(3), 319-325. https://doi.org/10.1134/S1029959921030103.
  24. He, J.H. (1999), "Variational iteration method-A kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/s0020-7462(98)00048-1.
  25. He, J.H. (2007), "Variational iteration method-Some recent results and new interpretations", J. Comput. Appl. Math., 207(1), 3-17. https://doi.org/10.1016/j.cam.2006.07.009.
  26. He, J.H., Wazwaz, A.M. and Xu, L. (2007), "The variational iteration method: Reliable, efficient and promising", Comput. Math. Appl., 54(7-8), 879-880. https://doi.org/10.1016/j.camwa.2006.12.056
  27. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., ... & Donoghue, J.P. (2006), "Neuronal ensemble control of prosthetic devices by a human with tetraplegia", Nature, 442(7099), 164-171. https://doi.org/10.1038/nature04970.
  28. Hussain, M., Naeem, M.N. and Tounsi, .A. (2020), "Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.
  29. Izumi, H., Suzuki, M., Aoyagi, S. and Kanzaki, T. (2011). "Realistic imitation of mosquito's proboscis: Electrochemically etched sharp and jagged needles and their cooperative inserting motion", Sens. Actuat. A: Phys., 165(1), 115-123. https://doi.org/10.1016/j.sna.2010.02.010.
  30. Jackson, R.C. and Cavusoglu, M.C. (2012), "Modeling of needle-tissue interaction forces during surgical suturing", IEEE Int. Conf. Robot. Auto., 4675-4680. https://doi.org/10.1109/icra.2012.6224756.
  31. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
  32. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
  33. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017a), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349. http://doi.org/10.12989/amr.2017.6.4.349.
  34. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircraft Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087.
  35. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017b), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. http://doi.org/10.12989/sss.2017.20.5.595.
  36. Kong, X. and Wu, C. (2009), "Measurement and prediction of insertion force for the mosquito fascicle penetrating into human skin", J. Bionic Eng., 6(2), 143-152. https://doi.org/10.1016/s1672-6529(08)60111-0.
  37. Kong, X.Q. and Wu, C.W. (2010), "Mosquito proboscis: An elegant bio-micro electro mechanical system", Phys. Rev. E., 82(1), 011910. https://doi.org/10.1103/physreve.82.011910.
  38. Mahmoud, S.R., Al-Solami, H.M., Alkenani, N., Alhebshi, A.M., Alwabli, A.S. and Bahieldin, A. (2020), "A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications", Membr. Water Treat., 11(6), 399. http://doi.org/10.12989/mwt.2020.11.6.399.
  39. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  40. Momani, S. and Abuasad, S. (2006), "Application of He's variational iteration method to Helmholtz equation", Chaos Soliton. Fract., 27(5), 1119-1123. https://doi.org/10.1016/j.chaos.2005.04.113.
  41. Okamura, A.M., Simone, C. and O'Leary, M.D. (2004), "Force modeling for needle insertion into soft tissue", IEEE Tran. Biomed. Eng., 51(10), 1707-1716. https://doi.org/10.1109/tbme.2004.831542.
  42. Pailler-Mattei, C., Bec, S. and Zahouani, H. (2008), "In vivo measurements of the elastic mechanical properties of human skin by indentation tests", Med. Eng. Phys., 30(5), 599-606. https://doi.org/10.1016/j.medengphy.2007.06.011.
  43. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  44. Panda, S.K. and Singh, B.N. (2010), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1.
  45. Podder, T.K., Sherman, J., Messing, E.M., Rubens, D.J., Fuller, D., Strang, J.G. and Yu, Y. (2006), "Needle insertion force estimation model using procedure-specific and patient-specific criteria", International Conference of the IEEE Engineering in Medicine and Biology Society, 555-558. https://doi.org/10.1109/iembs.2006.259921.
  46. Qi, X., Song, W., Mao, Z., Gao, W. and Cong, Q. (2013), "Fabrication of a bionic needle with both super-hydrophobic and antibacterial properties", J. Bionic Eng., 10(3), 377-382. https://doi.org/10.1016/s1672-6529(13)60233-4.
  47. Ramady, A., Atia, H.A. and Mahmoud, S.R. (2021), "An analytical solution for equations and the dynamical behavior of the orthotropic elastic material", Adv. Concrete Constr., 11(4), 315-321. https://doi.org/10.12989/acc.2021.11.4.315.
  48. Ramady, A., Dakhel, B., Balubaid, M. and Mahmoud, S.R. (2020a), "A theoretical approach in 2d-space with applications of the periodic wave solutions in the elastic body", Membr. Water Treat., 11(4), 295-302. https://doi.org/10.12989/mwt.2020.11.4.295.
  49. Ramady, A., Dakhel, B., Balubaid, M. and Mahmoud, S.R. (2020b), "A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material", Comput. Concrete, 25(5), 471-478. https://doi.org/10.12989/cac.2020.25.5.471.
  50. Ramasubramanian, M.K., Barham, O.M. and Swaminathan, V. (2008a), "Mechanics of a mosquito bite with applications to microneedle design", Bioinsp. Biomim., 3(4), 046001. https://doi.org/10.1088/1748-3182/3/4/046001.
  51. Ramsubramanian, M.K., Barham, O,M. and Swaminathan, V. (2008b), "Mosquitos and painless blood drawing", http://www.olivermbarham.com/microneedle_research.html.
  52. Sakes, A., Dodou, D. and Breedveld, P. (2016), "Buckling prevention strategies in nature as inspiration for improving percutaneous instruments: a review", Bioinsp. Biomim., 11(2), 021001. https://doi.org/10.1088/1748-3190/11/2/021001.
  53. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  54. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  55. Sweilam, N.H. and Khader, M.M. (2007), "Variational iteration method for one dimensional nonlinear thermoelasticity", Chaos Soliton. Fract., 32(1), 145-149. https://doi.org/10.1016/j.chaos.2005.11.028.
  56. Taj, M., Khadimallah, M.A., Hussain, M., Fareed, K., Safeer, M., Khedher, K.M., Ahmad, M., Naeem, M.N., Qazaq, A., Al Qahtani, A. and Mahmoud, S.R. (2021), "Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis", Adv. Concrete Constr., 11(3), 255-260. https://doi.org/10.12989/acc.2021.11.3.255.
  57. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.
  58. Timoshenko, S.P. and Gere, J.M. (1964), Theory of Elastic Stability, McGraw Hill, New York, USA.
  59. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  60. Wang, Y., Chen, RK., Tai, B.L., Xu, K. and Shih, A.J. (2015), "Study of insertion force and deformation for suturing with precurved NiTi guidewire", J. Biomech. Eng., 137(4), 041004. https://doi.org/10.1115/1.4029311.
  61. Xu, L. (2007), "Variational iteration method for solving integral equations", Comput. Math. Appl., 54(7-8), 1071-1078. https://doi.org/10.1016/j.camwa.2006.12.053.
  62. Xu, L., He, J.H. and Wazwaz, A.M. (2007), "Variational iteration method-Reality, potential, and challenges", J. Comput. Appl. Math., 207(1), 1-2. https://doi.org/10.1016/j.cam.2006.07.021.
  63. Yang, M. and Zahn, J.D. (2004), "Microneedle insertion force reduction using vibratory actuation", Biomed. Microdev., 6, 177-182. https://doi.org/10.1023/B:BMMD.0000042046.07678.2e.
  64. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.