DOI QR코드

DOI QR Code

Wood Chemical Compositions of Raru Species Originating from Central Tapanuli, North Sumatra, Indonesia: Effect of Differences in Wood Species and Log Positions

  • Received : 2021.05.24
  • Accepted : 2021.07.17
  • Published : 2021.09.25

Abstract

Raru is a lesser-known plant species originating from North Sumatra, Indonesia. Information on the characteristics is still limited, especially its chemical component. Therefore, this study aims to examine the chemical composition information of Cotylelobium lanceolatum, Cotylelobium melanoxylon, and Vatica pauciflora woods based on their axial log positions (bottom, middle, and top). The wood chemical analysis was performed in terms of the Indonesian National Standard (SNI) method. Furthermore, the analysis measured holocellulose, 𝛼-cellulose, hemicellulose, lignin content, alcohol benzene extractive content, the extractive substance in hot and water, and solubility in NaOH 1%. The results indicated that the species and their log axial positions affected different chemical components, which included 𝛼-cellulose, hemicellulose, and lignin of C. lanceolatum amounting to 41.88%, 19.39%, and 28.68% respectively. Meanwhile, for C. Melanoxylon, they were 42.01%, 21.11%, and 24.76% respectively; and for V. pauciflora wood, they were 42.95%, 23.24%, and 30.11% respectively. The average values of the extractive contents including the solubility in 1: 2 ethanol benzene, NaOH, and hot water for C. lanceolatum, C. melanoxylon, and V. pauciflora wood were (10.58%, 27.62%, 8.13%), (14.54%, 28.22%, 7.82%), and (10.95%, 28.60%, 7.57%) respectively. The wood species had a significant effect on chemical components including lignin, cellulose and hemicellulose, and extractive solubility in cold water. Furthermore, the axial log position had a significant effect on all the parameters of the chemical composition of the wood being tested.

Keywords

Acknowledgement

We are grateful to the Directorate General of Higher Education-Ministry of Research, Technology and Higher Education, Republic Indonesia, for funding the research through to Hibah Penelitian Dasar (PD) year of 2019 (No: 11/E1/KP.PTNBH/2019, date: 29 March 2019).

References

  1. American Society for Testing Materials (ASTM). 1978. ASTM D1104-56: Method of Test for Holocellulose in Wood. United States of America.
  2. Berrocal, A., Baeza, J., Rodriguez, J., Espinosa, M., Freer, J. 2004. Effect of tree age on variation of Pinus radiata D. Don chemical composition. Journal of the Chilean Chemical Society 49(3): 251-256.
  3. Bowyer, J.L., Shmulsky, Haygreen, J.G. 2003. Forest Products and Wood Science - An Introduction. Fourth edition. Iowa (US): Iowa State University Pr.
  4. Casey, J.P. 1980. Pulp and Paper Chemistry and Chemical Technology. Third edition.; A Willey-Interscience Publisher Inc: New York, pp. 1-848.
  5. Demirbas, A. 2005. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 27(4): 327-337. https://doi.org/10.1080/00908310390266643
  6. Dockzekalska, B., Zborowska, M. 2010. Wood chemical composition of selected fast-growing species treated with NaOH part II: Non-structural substance. Wood Research 55(3): 83-92.
  7. Elfiati, D., Susilowati, A., Modes, C., Rachmat, H.H. 2019. Morphological and molecular identification of cellulolytic fungi associated with local raru species. Biodiversitas 20(8): 2348-2354.
  8. Fagerstedt, K., Saranpaa, P., Tapanila, T., Immanen, J., Serra, J.A.A., Nieminen, K. 2015. Determining the composition of lignins in different tissues of Silver birch. Plants 4(2): 183-195. https://doi.org/10.3390/plants4020183
  9. Fatimah, S., Susanto, M., Lukmandaru, G. 2013. Studi komponen kimia kayu Eucalyptus pellita F. Muell dari pohon plus hasil uji keturunan generasi kedua di wonogiri, jawa tengah. Jurnal Ilmu Kehutanan 7(1): 57-69.
  10. Fatriasari, W., Hermiati, E. 2008. Analysis of fiber morphology and physical-chemical properties of six species of bamboo as raw material for pulp and paper. Jurnal Ilmu Teknologi Hasil Hutan 1(2): 67-72.
  11. Fatriasari, W., Supriyanto, Iswanto, A.H. 2015. The kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences 47(2): 149-159. https://doi.org/10.5614/j.eng.technol.sci.2015.47.2.4
  12. Fatriasari, W., Masruchin, N., Hermiati, E. 2019. Selulosa: Karakteristik dan Pemanfaatannya. LIPI Press: Indonesia, pp. 1-166.
  13. Fatriasari, W., Nurhamzah, F., Raniya, R., Laksana, R.P.B., Anita, S.H., Iswanto, A.H., Hermiati, E. 2020. Enzymatic hydrolysis performance of biomass by the addition of a lignin based biosurfactant. Journal of the Korean Wood Science and Technology 48(5): 651-665. https://doi.org/10.5658/WOOD.2020.48.5.651
  14. Fengel, D., Wegener, G. 1984. Wood, Chemistry, Ultrastructure, Reactions. Walter de Grugter, Berlin New York: USA, pp. 1-613.
  15. Gindl, W., Gupta, H.S., Grunwald, C. 2002. Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Canadian Journal of Botany 80(10): 1029-1033. https://doi.org/10.1139/b02-091
  16. Gonzalez-Rodrigo, B., Esteban, L.G., de Palacios, P., Garcia-Fernandez, F., Guindeo, Y.A. 2013. Variation throughout the tree stem in the physical-mechanical properties of the wood of Abies alba mill. From The Spanish Pyrenees. Madera Bosques 19(2): 87-107.
  17. Hastuti, N., Efiy anti, L., Pari, G., Saepuloh, Setiawan, D. 2017. Chemical component and potential utilization of five lesser known wood Species Originated from West Java. Jurnal Penelitian Hasil Hutan 35(1): 15-27. https://doi.org/10.20886/jphh.2017.35.1.15-27
  18. Henriksson, G., Brannvall, E., Lennholm, H. 2009. Wood Chemistry and Wood Biotechnology. In Pulp and Paper Chemistry and Technology. Ek, M., Gellerstedt, G., Henriksson. Walter de Gryuter: Berlin, Germany, pp. 13-44.
  19. Hidayat, A., Iswanto, A.H., Susilowati, A., Rachmat, H.H. 2018. Radical scavenging activity of kemenyan resin produced by an indonesian native plant, Styrax sumatrana. Journal of the Korean Wood Science and Technology 46(4): 346-354. https://doi.org/10.5658/WOOD.2018.46.4.346
  20. Hildebrand, F.H. 1954. Daftar Nama Pohon-Pohonan 'Tapanuli' Sumatera Utara. Report of Forest Research Agency No. 67. Forest Research Agency, Bogor, Indonesia.
  21. Indonesia National Standard (SNI). 2017. SNI 8429: Acid-insoluble Lignin in Wood and Pulp (T 222 om-15, IDT). National Standardization Agency of Indonesia.
  22. Indonesia National Standard (SNI). 2017. SNI 8400: Alpha, Beta, and Gamma-cellulose in Pulp. National Standardization Agency of Indonesia.
  23. Indonesia National Standard (SNI). 2017. SNI 8401: Solvent Extractives of Wood and Pulp (T 204 cm-07, IDT). National Standardization Agency of Indonesia, 2017.
  24. Indonesia National Standard (SNI). 1989. SNI 01-1305: Wood, Test Method for Cold Hot Water Solubility. National Standardization Agency of Indonesia.
  25. Indonesia National Standard (SNI). 1990. SNI 14-1838: Test Method for One Percent Sodium Hydroxide of Pulp Wood Solubility. National Standardization Agency of Indonesia.
  26. Indonesia National Standard (SNI). 2005. SNI 08-7070: Method of Test for Moisture Content of Pulp and Wood by heating in the oven. National Standardization Agency of Indonesia.
  27. Iswanto, A.H., Susilowati, A., Azhar, I., Riswan, Supriyanto, Tarigan, J.E., Fatriasari, W. 2016. Physical and mechanical properties of local styrax wood from north tapanuli, in indonesia. Journal of the Korean Wood Science and Technology 44(4): 539-550. https://doi.org/10.5658/WOOD.2016.44.4.539
  28. Iswanto, A.H., Siregar, Y.S., Susilowati, A., Darwis, A., Hartono, R., Wirjosentono, B., Rahmat, H.H., Hidayat, A., Fatriasari, W. 2019. Variation in chemical constituent of Styrax sumatrana wood growing at different cultivation site in North Sumatra, Indonesia. Biodiversitas 20(2): 448-452. https://doi.org/10.13057/biodiv/d200221
  29. Jasni, Pari, G., Satiti, E.R. 2016. Chemical composition and natural durability of 20 indonesian wood species tested under the shade. Jurnal Penelitian Hasil Hutan 34(4): 323-333. https://doi.org/10.20886/jphh.2016.34.4.323-333
  30. Kiswandono, A.A., Iswanto, A.H., Susilowati, A., Lumbantobing, A.F. 2016. Analysis of the Content of Cinnamic Acid and Phytochemical Screening Sap Incense Species of Bulu (Styrax benzoine var. Hiliferum) of North Tapanuli. Proceeding of National Seminar of Chemical 2016, Mataram, Indonesia, 10-11 August 2016; Universitas Mataram: Indonesia.
  31. Kollman, F.F.P., Cote, W.A. 1984. Principle of Wood Science and Technology, Volume I: Solid Wood. Berlin, Heidelberg, New York, Tokyo: Springer - Verlag.
  32. Lee, H.W., Jeong, H., Ju, Y.-M., Youe, W.-J., Lee, J., Lee, S.M. 2019. Pyrolysis properties of lignins extracted from different biorefinery processes. Journal of the Korean Wood Science and Technology 47(4): 486-497. https://doi.org/10.5658/wood.2019.47.4.486
  33. Lestari, E., Pramasari, D.A., Amin, Y., Adi, D.S., Bahanawan, A., Dwianto, W. 2016. The Chemical Components Changes Of Platinum Teak Wood. Proceedings of The 6th International Symposium for Sustainable Humanosphere Humanosphere Science School 2016 pp. 164-170.
  34. Li, Q., Zhu, Y.Q., Eichhorn, S.J. 2018. Structural supercapacitors using a solid resin electroly te with carbonized electrospun cellulose/carbon nanotube electrodes. Journal of Materials Science 53: 14598-14607. https://doi.org/10.1007/s10853-018-2665-x
  35. Liu, Z.-H., Hao, N., Shinde, S., Pu, Y., Kang, X., Ragauskas, J.A., Yuan, S.J. 2019. Defining Lignin Nanoparticle Properties through Tailored Lignin Reactivity by Sequential Organosolv Fragmentation Approach (SOFA). Green Chemistry 2: 245-260. https://doi.org/10.1039/b006704k
  36. Lukmandaru, G. 2016. Correlation between extractive content and colour properties in teak heartwood. Jurnal Penelitian Hasil Hutan 34(3): 207-216. https://doi.org/10.20886/jphh.2016.34.3.207-216
  37. Lukmandaru, G., Zumaini, U.F., Soeprijadi, D., Nugroho, W.D., Susanto, M. 2016. Chemical properties and fiber dimension of Eucalyptus pellita from The 2nd generation of progeny tests in pelaihari, south borneo, indonesia. Journal of the Korean Wood Science and Technology 44(4): 571-588. https://doi.org/10.5658/WOOD.2016.44.4.571
  38. MacLeod, M. 2007. The top ten factors in kraft pulp yield. Paper and Timber 89(4): 1-7.
  39. Maulina, S., Handika, G., Irvan., Iswanto, A.H. 2020. Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride. Journal of the Korean Wood Science and Technology 48(4): 503-512. https://doi.org/10.5658/WOOD.2020.48.4.503
  40. Mietner, J.B., Jiang, X., Edlund, U., Saake, B., Navarro, J.R.G. 2021. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Scientific Reports 11: 6461. https://doi.org/10.1038/s41598-021-85865-4
  41. Ministry of Environment and Forestry. 2020. Vademecum Kehutanan Indonesia 2020; Ministry of Environment and Forestry: Jakarta, Indonesia, pp. 319.
  42. Martawijaya, A., Kartasujana, I., Kadir, K., Prawira, S.A. 2005. Atlas Kayu Indonesia Jilid I; Forest Research and Development Agency: Bogor, Indonesia, pp. 1-171.
  43. Ona, T., Sonoda, T., Ito, K., Shibata, M. 1998. Relations between various extracted basic densities and wood chemical components in Eucalyptus globulus. Journal of Wood Science 44: 165-168. https://doi.org/10.1007/BF00521958
  44. Pari, G., Roliadi, H., Setiawan, D., Saepuloh. 2006. Chemical component of ten planted wood species originated from west java. Jurnal Penelitian Hasil Hutan 24(2): 89-101 https://doi.org/10.20886/jphh.2006.24.2.89-101
  45. Park, S.-Y., Kim, J.-C., Kim, J.-H., Yang, S.-Y., Kwon, O., Yeo, H., Cho, K.-C., Choi, I.-G. 2017. Possibility of wood classification in Korean softwood species using near-infrared spectroscopy based on their chemical compositions. Journal of the Korean Wood Science and Technology 45(2): 202-212. https://doi.org/10.5658/WOOD.2017.45.2.202
  46. Pasaribu, G. 2007. Physical and mechanical properties of four endemic wood species from north sumatra. Jurnal Penelitian Hasil Hutan 25(1): 15-27. https://doi.org/10.20886/jphh.2007.25.1.15-27
  47. Pasaribu, G., Sipayung, B., Pari, G. 2007. Chemical component analysis of four endemic wood species from north sumatra. Jurnal Penelitian Hasil Hutan 25(4): 327-333. https://doi.org/10.20886/jphh.2007.25.4.327-333
  48. Pettersen, R.C. 1984. The Chemical Composition of Wood. In The Chemistry of Solid Wood. Rowell, R. American Chemical Society: USA, pp. 57-126.
  49. Purnamawati, R., Febrianto, F., Wistara, I.N.J., Nikmatin, S., Hidayat, W., Lee, S.H., Kim, N.H. 2018. Physical and chemical properties of kapok (Ceiba pentandra) and balsa (Ochroma pyramidale) fibers. Journal of the Korean Wood Science and Technology 46(4): 393-401. https://doi.org/10.5658/WOOD.2018.46.4.393
  50. Purwita, C.A., Sugesty, S. 2018. Preparation and characterization of long fiber dissolving pulp from spiny bamboo (Bambusa blumeana). Jurnal Selulosa 8(1): 21-32. https://doi.org/10.25269/jsel.v1i01.232
  51. Rahman, W.M.N.W.A., Yunus, N.Y.M., Kasim, J., Tamat, N.S.M. 2018. Effects of tree porsion and radial position on physical and chemical properties of kelampayan (Neolamarckia cadamba) wood. Bioresources 13(2): 4536-4549.
  52. Rahmat, H.H., Susilowati, A., Elfiati, D., Hartini, K.S., Faradillah, W.N. 2017. Strong genetic differentiation of the endemic rosin-producing tree Styrax sumatrana (Styracaceae) in North Sumatra, Indonesia. Biodiversitas 18(4): 1331-1335. https://doi.org/10.13057/biodiv/d180407
  53. Ray, D., Das, M., Mitra, D. 2009. Influence of alkali treatment on creep properties and crystalinity of jute fibres. Bioresources 4(2): 730-739.
  54. Siagian, R.M., Darmawan, S., Saepuloh. 1999. Chemical composition of acacia mangium willd at several ages harvested from first rotation growth. Buletin Penelitian Hasil Hutan 17(1): 57-66.
  55. Siddiqui, L., Mishra, H., Mishra, P.K., Iqbal, Z., Talegaonkar, S. 2018. Novel 4-in-1 strategy to combat colon cancer, drug resistance and cancer relapse utilizing functionalized bioinspiring lignin nanoparticle. Medical Hypotheses 121: 10-14. https://doi.org/10.1016/j.mehy.2018.09.003
  56. Sinaga, M.Z.E., Susilowati, A., Sebayang, F., Ginting, S.E., and Suhartati, T. 2020. Antioxidant and antihyperuricemic potentials of raru (Cotylelobium melanoxylon Pierre) bark. Rasayan Journal of Chemistry 13(4): 2569-2576. https://doi.org/10.31788/RJC.2020.1345942
  57. Sjostrom, E. 1993. Wood Chemistry. Fundamentals and Applications; Academic Press: New York, USA, pp. 1-293.
  58. Stephenson, J. 1951. Pulp and Paper Manufacture: Preparation of Stack for making paper; Mc Grow Hill Book Companny, Inc: NewYork, USA.
  59. Sumada, K., Tamara, P.E., Alqani, F. 2011. Isolation study of efficient A-Cellulose from waste plant stem manihot esculenta crantz. Jurnal Teknik Kimia 5(2): 434-438.
  60. Susilowati, A., Rachmat, H.H., Kholibrina, C.R., Munthe, M.A. 2018. Phylogeny of kemenyan (Styrax sp) based on morphological character. IOP Conference Series: Earth and Environmental Science 122: 012062. https://doi.org/10.1088/1755-1315/122/1/012062
  61. Susilowati, A., Iswanto, A.H., Kusuma, Y.S., Rachmat, H.H., Elfiati, D., Larengkeng, S.H., Ginting, I.M., and Rangkuti, A.B. 2020. Morphological identification of local raru producing trees from sibuluan nauli, central tapanuli, North Sumatera. IOP Conference Series: Earth and Environmental Science 454: 012155. https://doi.org/10.1088/1755-1315/454/1/012155
  62. Susilowati, A., Rachmat, H.H., Elfiati, D., Kholibrina, R.C., Kusuma, S.Y., Siregar, H. 2019. Population structure of Cotylelobium melanoxylon within vegetation community in Bonalumban forest, Central Tapanuli, North Sumatra, Indonesia. Biodiversitas 20(6): 1681-1687.
  63. Susilowati, A., Hartini, K.S., Elfiati, D., Rachmat, H.H., Kusuma, S.Y., Sinaga, M.Z.E., Suhartati, T. 2020. Conservation of tropical tree biodiversity through macropropagation by shoot cutting of raru (Cotylelobium melanoxylon), a highly utilized dipterocarp in North Sumatra, Indonesia. Biodiversitas 21(2): 724-730.
  64. Syafii, W., Siregar, I.Z. 2006. Chemical properties and fiber dimension of Acacia mangium willd. from three provenances. Journal of Tropical Wood Science and Technology 4(1): 28-32.
  65. Terashima, N., Kitano, K., Kojima, M., Yoshida, M., Yamamoto, H., Westermark, U. 2009. Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of Ginkgo Tracheid. Journal of Wood Science 55: 409-416. https://doi.org/10.1007/s10086-009-1049-x
  66. Tzeng, P., Hewson, D.J., Vukusic, P., Eichhorn, S.J., Grunlan, J.C. 2015. Bio-Inspired iridescent layer-by-layer-assembled cellulose nanocrystal Bragg Stacks. Journal of Materials Chemistry 3(17): 4260-4264.
  67. Xiao, D., Ding, W., Zhang, J., Ge, Y., Wu, Z., Li, Z. 2019. Fabrication of a versatile lignin-based nano-trap for heavy metal ion capture and bacterial inhibition. Chemical Engineering Journal 358: 310-320. https://doi.org/10.1016/j.cej.2018.10.037
  68. Xing, Q., Buono, P., Ruch, D., Dubois, P., Wu, L., Wang, W.-J. 2019. Biodegradable UV-blocking films through core-shell lignin-melanin nanoparticles in poly(butylene adipate-co-terephthalate). ACS Sustainable Chemistry & Engineering 7(4) 4147-4157. https://doi.org/10.1021/acssuschemeng.8b05755
  69. Yang, I., Jeong, H., Lee, J.J., Lee, S.M. 2019. Relationship between lignin content and the durability of wood pellets fabricated using Larix kaempferi C. Sawdust. Journal of the Korean Wood Science and Technology 47(1): 110-123. https://doi.org/10.5658/WOOD.2019.47.1.110
  70. Yunanta, R.R.K., Lukmandaru, G., Fernandez, A. 2014. Chemical properties of Shorea retusa, Shorea macroptera, and Shorea macrophylla Woods. Jurnal Dipterokarpa 8(1): 15-24.
  71. Zikeli, F., Vinciguerra, V., D'Annibale, A., Capitani, D., Romagnoli, M., Scarascia Mugnozza, G. 2019. Preparation of lignin nanoparticles from wood waste for wood surface treatment. Nanomaterials 9(2): 281. https://doi.org/10.3390/nano9020281