DOI QR코드

DOI QR Code

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Hong, Taehwa (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Yonghan (Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2021.04.26
  • Accepted : 2021.05.15
  • Published : 2021.09.30

Abstract

Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1090635) and by the advanced MR study group of KSMRM (2021).

References

  1. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013;495:187-192 https://doi.org/10.1038/nature11971
  2. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 2015;74:1621-1631 https://doi.org/10.1002/mrm.25559
  3. Jiang Y, Ma D, Jerecic R, et al. MR fingerprinting using the quick echo splitting NMR imaging technique. Magn Reson Med 2017;77:979-988 https://doi.org/10.1002/mrm.26173
  4. McGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging 2014;33:2311-2322 https://doi.org/10.1109/TMI.2014.2337321
  5. Pierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med 2016;75:2481-2492 https://doi.org/10.1002/mrm.25776
  6. Asslander J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018;79:83-96 https://doi.org/10.1002/mrm.26639
  7. Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 2019;81:3530-3543
  8. Buonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med 2016;76:1127-1135 https://doi.org/10.1002/mrm.26009
  9. Ma D, Coppo S, Chen Y, et al. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med 2017;78:1781-1789 https://doi.org/10.1002/mrm.26580
  10. Cloos MA, Knoll F, Zhao T, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun 2016;7:12445 https://doi.org/10.1038/ncomms12445
  11. Korzdorfer G, Jiang Y, Speier P, et al. Magnetic resonance field fingerprinting. Magn Reson Med 2019;81:2347-2359 https://doi.org/10.1002/mrm.27558
  12. Hong T, Han D, Kim DH. Simultaneous estimation of PD, T1, T2 , T2*, and B0 using magnetic resonance fingerprinting with background gradient compensation. Magn Reson Med 2019;81:2614-2623 https://doi.org/10.1002/mrm.27556
  13. Wang CY, Coppo S, Mehta BB, Seiberlich N, Yu X, Griswold MA. Magnetic resonance fingerprinting with quadratic RF phase for measurement of T2* simultaneously with deltaf, T1 , and T2. Magn Reson Med 2019;81:1849-1862 https://doi.org/10.1002/mrm.27543
  14. Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density. Magn Reson Med 2017;77:1446-1458 https://doi.org/10.1002/mrm.26216
  15. Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016;279:278-286 https://doi.org/10.1148/radiol.2016152037
  16. Chen Y, Panda A, Pahwa S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology 2019;290:33-40 https://doi.org/10.1148/radiol.2018180836
  17. Ma D, Pierre EY, Jiang Y, et al. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations. Magn Reson Med 2016;75:2303-2314 https://doi.org/10.1002/mrm.25818
  18. Liao C, Bilgic B, Manhard MK, et al. 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. Neuroimage 2017;162:13-22 https://doi.org/10.1016/j.neuroimage.2017.08.030
  19. Ma D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med 2018;79:2190-2197 https://doi.org/10.1002/mrm.26886
  20. Cao X, Ye H, Liao C, Li Q, He H, Zhong J. Fast 3D brain MR fingerprinting based on multi-axis spiral projection trajectory. Magn Reson Med 2019;82:289-301 https://doi.org/10.1002/mrm.27726
  21. Ma D, Jones SE, Deshmane A, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 2019;49:1333-1346 https://doi.org/10.1002/jmri.26319
  22. Burstein D, Bashir A, Gray ML. MRI techniques in early stages of cartilage disease. Invest Radiol 2000;35:622-638 https://doi.org/10.1097/00004424-200010000-00008
  23. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007;13:76-86 https://doi.org/10.22203/eCM.v013a08
  24. Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011;31:37-61 https://doi.org/10.1148/rg.311105084
  25. Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 2011;19:249-282 https://doi.org/10.1016/j.mric.2011.02.010
  26. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997;205:546-550 https://doi.org/10.1148/radiology.205.2.9356643
  27. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology 2000;214:259-266 https://doi.org/10.1148/radiology.214.1.r00ja15259
  28. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001;177:665-669 https://doi.org/10.2214/ajr.177.3.1770665
  29. Dardzinski BJ, Laor T, Schmithorst VJ, Klosterman L, Graham TB. Mapping T2 relaxation time in the pediatric knee: feasibility with a clinical 1.5-T MR imaging system. Radiology 2002;225:233-239 https://doi.org/10.1148/radiol.2251011461
  30. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 2003;17:358-364 https://doi.org/10.1002/jmri.10263
  31. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004;232:592-598 https://doi.org/10.1148/radiol.2322030976
  32. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-368 https://doi.org/10.1055/s-2004-861764
  33. Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001;45:36-41 https://doi.org/10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO;2-W
  34. Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 2003;49:488-492 https://doi.org/10.1002/mrm.10389
  35. Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004;182:167-172 https://doi.org/10.2214/ajr.182.1.1820167
  36. Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 2004;51:286-290 https://doi.org/10.1002/mrm.10714
  37. Cloos MA, Asslander J, Abbas B, et al. Rapid radial T1 and T2 mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging 2019;50:810-815 https://doi.org/10.1002/jmri.26615
  38. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  39. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651 https://doi.org/10.1002/mrm.1241
  40. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76 https://doi.org/10.1109/TMI.2006.885337
  41. Mugler JP 3rd. Improved three-dimensional GRASE imaging with the SORT phase-encoding strategy. J Magn Reson Imaging 1999;9:604-612 https://doi.org/10.1002/(SICI)1522-2586(199904)9:4<604::AID-JMRI15>3.0.CO;2-1
  42. Uecker M, Lai P, Murphy MJ, et al. ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001 https://doi.org/10.1002/mrm.24751
  43. Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging 2014;40:1022-1040 https://doi.org/10.1002/jmri.24521
  44. The Berkeley Advanced Reconstruction Toolbox (BART) toolbox (https://mrirecon.github.io/bart/). Published 2015. Accessed June 9, 2021
  45. Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241 https://doi.org/10.1002/mrm.20314
  46. Ben-Eliezer N, Sodickson DK, Block KT. Rapid and accurate T2 mapping from multi-spin-echo data using Blochsimulation-based reconstruction. Magn Reson Med 2015;73:809-817 https://doi.org/10.1002/mrm.25156
  47. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43-B:752-757 https://doi.org/10.1302/0301-620X.43B4.752
  48. Cruz G, Schneider T, Bruijnen T, Gaspar AS, Botnar RM, Prieto C. Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO). PLoS One 2018;13:e0201808 https://doi.org/10.1371/journal.pone.0201808
  49. Li X, Benjamin Ma C, Link TM, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007;15:789-797 https://doi.org/10.1016/j.joca.2007.01.011
  50. Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol 2010;83:476-485 https://doi.org/10.1259/bjr/62779246
  51. Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 2005;54:929-936 https://doi.org/10.1002/mrm.20609
  52. Mehta BB, Ma D, Pierre EY, Jiang Y, Coppo S, Griswold MA. Image reconstruction algorithm for motion insensitive MR Fingerprinting (MRF): MORF. Magn Reson Med 2018;80:2485-2500 https://doi.org/10.1002/mrm.27227
  53. Yu Z, Zhao T, Asslander J, Lattanzi R, Sodickson DK, Cloos MA. Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging 2018;54:241-248 https://doi.org/10.1016/j.mri.2018.09.002