Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1090635) and by the advanced MR study group of KSMRM (2021).
References
- Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013;495:187-192 https://doi.org/10.1038/nature11971
- Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 2015;74:1621-1631 https://doi.org/10.1002/mrm.25559
- Jiang Y, Ma D, Jerecic R, et al. MR fingerprinting using the quick echo splitting NMR imaging technique. Magn Reson Med 2017;77:979-988 https://doi.org/10.1002/mrm.26173
- McGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging 2014;33:2311-2322 https://doi.org/10.1109/TMI.2014.2337321
- Pierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med 2016;75:2481-2492 https://doi.org/10.1002/mrm.25776
- Asslander J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018;79:83-96 https://doi.org/10.1002/mrm.26639
- Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 2019;81:3530-3543
- Buonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med 2016;76:1127-1135 https://doi.org/10.1002/mrm.26009
- Ma D, Coppo S, Chen Y, et al. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med 2017;78:1781-1789 https://doi.org/10.1002/mrm.26580
- Cloos MA, Knoll F, Zhao T, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun 2016;7:12445 https://doi.org/10.1038/ncomms12445
- Korzdorfer G, Jiang Y, Speier P, et al. Magnetic resonance field fingerprinting. Magn Reson Med 2019;81:2347-2359 https://doi.org/10.1002/mrm.27558
- Hong T, Han D, Kim DH. Simultaneous estimation of PD, T1, T2 , T2*, and B0 using magnetic resonance fingerprinting with background gradient compensation. Magn Reson Med 2019;81:2614-2623 https://doi.org/10.1002/mrm.27556
- Wang CY, Coppo S, Mehta BB, Seiberlich N, Yu X, Griswold MA. Magnetic resonance fingerprinting with quadratic RF phase for measurement of T2* simultaneously with deltaf, T1 , and T2. Magn Reson Med 2019;81:1849-1862 https://doi.org/10.1002/mrm.27543
- Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density. Magn Reson Med 2017;77:1446-1458 https://doi.org/10.1002/mrm.26216
- Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology 2016;279:278-286 https://doi.org/10.1148/radiol.2016152037
- Chen Y, Panda A, Pahwa S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology 2019;290:33-40 https://doi.org/10.1148/radiol.2018180836
- Ma D, Pierre EY, Jiang Y, et al. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations. Magn Reson Med 2016;75:2303-2314 https://doi.org/10.1002/mrm.25818
- Liao C, Bilgic B, Manhard MK, et al. 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. Neuroimage 2017;162:13-22 https://doi.org/10.1016/j.neuroimage.2017.08.030
- Ma D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage. Magn Reson Med 2018;79:2190-2197 https://doi.org/10.1002/mrm.26886
- Cao X, Ye H, Liao C, Li Q, He H, Zhong J. Fast 3D brain MR fingerprinting based on multi-axis spiral projection trajectory. Magn Reson Med 2019;82:289-301 https://doi.org/10.1002/mrm.27726
- Ma D, Jones SE, Deshmane A, et al. Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 2019;49:1333-1346 https://doi.org/10.1002/jmri.26319
- Burstein D, Bashir A, Gray ML. MRI techniques in early stages of cartilage disease. Invest Radiol 2000;35:622-638 https://doi.org/10.1097/00004424-200010000-00008
- Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007;13:76-86 https://doi.org/10.22203/eCM.v013a08
- Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011;31:37-61 https://doi.org/10.1148/rg.311105084
- Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 2011;19:249-282 https://doi.org/10.1016/j.mric.2011.02.010
- Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997;205:546-550 https://doi.org/10.1148/radiology.205.2.9356643
- Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. Radiology 2000;214:259-266 https://doi.org/10.1148/radiology.214.1.r00ja15259
- Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001;177:665-669 https://doi.org/10.2214/ajr.177.3.1770665
- Dardzinski BJ, Laor T, Schmithorst VJ, Klosterman L, Graham TB. Mapping T2 relaxation time in the pediatric knee: feasibility with a clinical 1.5-T MR imaging system. Radiology 2002;225:233-239 https://doi.org/10.1148/radiol.2251011461
- Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 2003;17:358-364 https://doi.org/10.1002/jmri.10263
- Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004;232:592-598 https://doi.org/10.1148/radiol.2322030976
- Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-368 https://doi.org/10.1055/s-2004-861764
- Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001;45:36-41 https://doi.org/10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO;2-W
- Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 2003;49:488-492 https://doi.org/10.1002/mrm.10389
- Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 2004;182:167-172 https://doi.org/10.2214/ajr.182.1.1820167
- Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 2004;51:286-290 https://doi.org/10.1002/mrm.10714
- Cloos MA, Asslander J, Abbas B, et al. Rapid radial T1 and T2 mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging 2019;50:810-815 https://doi.org/10.1002/jmri.26615
- Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
- Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651 https://doi.org/10.1002/mrm.1241
- Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76 https://doi.org/10.1109/TMI.2006.885337
- Mugler JP 3rd. Improved three-dimensional GRASE imaging with the SORT phase-encoding strategy. J Magn Reson Imaging 1999;9:604-612 https://doi.org/10.1002/(SICI)1522-2586(199904)9:4<604::AID-JMRI15>3.0.CO;2-1
- Uecker M, Lai P, Murphy MJ, et al. ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001 https://doi.org/10.1002/mrm.24751
- Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging 2014;40:1022-1040 https://doi.org/10.1002/jmri.24521
- The Berkeley Advanced Reconstruction Toolbox (BART) toolbox (https://mrirecon.github.io/bart/). Published 2015. Accessed June 9, 2021
- Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 2005;53:237-241 https://doi.org/10.1002/mrm.20314
- Ben-Eliezer N, Sodickson DK, Block KT. Rapid and accurate T2 mapping from multi-spin-echo data using Blochsimulation-based reconstruction. Magn Reson Med 2015;73:809-817 https://doi.org/10.1002/mrm.25156
- Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43-B:752-757 https://doi.org/10.1302/0301-620X.43B4.752
- Cruz G, Schneider T, Bruijnen T, Gaspar AS, Botnar RM, Prieto C. Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO). PLoS One 2018;13:e0201808 https://doi.org/10.1371/journal.pone.0201808
- Li X, Benjamin Ma C, Link TM, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007;15:789-797 https://doi.org/10.1016/j.joca.2007.01.011
- Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol 2010;83:476-485 https://doi.org/10.1259/bjr/62779246
- Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 2005;54:929-936 https://doi.org/10.1002/mrm.20609
- Mehta BB, Ma D, Pierre EY, Jiang Y, Coppo S, Griswold MA. Image reconstruction algorithm for motion insensitive MR Fingerprinting (MRF): MORF. Magn Reson Med 2018;80:2485-2500 https://doi.org/10.1002/mrm.27227
- Yu Z, Zhao T, Asslander J, Lattanzi R, Sodickson DK, Cloos MA. Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging 2018;54:241-248 https://doi.org/10.1016/j.mri.2018.09.002