DOI QR코드

DOI QR Code

FE analysis of ultimate strength of circular CFT columns considering creep effect

  • Kim, SeongHun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwak, Hyo-Gyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2021.04.16
  • Accepted : 2021.09.06
  • Published : 2021.09.25

Abstract

This paper introduces a simple but effective strength reduction factor to directly determine the strength reduction due to the creep deformation of concrete in circular CFT columns. Upon constructing the linearized P-M interaction diagram on the basis of the design procedure introduced in the previous paper or described in the existing design codes, multiplying the introduced strength reduction factor makes it possible to determine the ultimate resisting capacity of CFT columns without a rigorous time-dependent nonlinear analysis. The efficiency and accuracy of the introduced strength reduction factor are verified through comparison of the P-M interaction diagrams determined by the use of the strength reduction factor and those obtained by rigorous nonlinear analysis considering the creep deformation. Numerous additional parametric studies show that the introduced strength reduction factor can effectively be used especially in the preliminary design stage where many trial and error procedures are performed while considering the creep effect in concrete to select a proper section dimension of a CFT column.

Keywords

Acknowledgement

This work is supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No. 2017R1A5A1014883) and is financially supported by Korea Ministry of Land, Infrastructure and Transport (MOLIT) as 「Innovative Talent Education Program for Smart City」.

References

  1. ACI Committee (2005), Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R05), American Concrete Institute.
  2. Ahiwale, D., Khartode, R., Bhapkar, A., Narule, G. and Sharma, K. (2021), "Influence of compressive load on concrete filled steel tubular column with variable thickness", Innov. Infrastr. Solut., 6(1), 1-14. https://doi.org/10.1007/s41062-020-00390-z.
  3. AISC Committee (2010), Specification for Structural Steel Buildings (ANSI/AISC 360-10), American Institute of Steel Construction, Chicago-Illinois.
  4. Bazant, Z.P. and Oh, B.H. (1984), "Deformation of progressively cracking reinforced concrete beams", Comput. Aid. Des., 16(6), 338-338. https://doi.org/10.1016/0010-4485(84)90120-9
  5. Chen, B., Lai, Z., Lai, X., Varma, A.H. and Yu, X. (2017), "Creep-prediction models for concrete-filled steel tube arch bridges", J. Bridge Eng., 22(7), 04017027. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001051.
  6. Choi, Y.H., Foutch, D.A. and LaFave, J.M. (2006), "New approach to AISC P-M interaction curve for square concrete filled tube (CFT) beam-columns", Eng. Struct., 28(11), 1586-1598. https://doi.org/10.1016/j.engstruct.2006.02.009.
  7. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6.
  8. Han, B., Wang, Y.F., Wang, Q. and Zhang, D.J. (2013), "Creep analysis of CFT columns subjected to eccentric compression loads", Comput. Concrete, 11(4), 291-304. https://doi.org/10.12989/cac.2013.11.4.291.
  9. Herrmann, H. and Bucksch, H. (2014), "Eurocode 4-Design of composite steel and concrete structures", Dictionary Geotechnical Engineering/Worterbuch GeoTechnik, 486-486.
  10. Hu, H.T., Chen, C.W. and Huang, M.Y. (2011), "Nonlinear finite element analysis of CFT-to-bracing connections subjected to axial compressive forces", Eng. Struct., 33(5), 1479-1490. https://doi.org/10.1016/j.engstruct.2011.01.018
  11. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322).
  12. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., ... & Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  13. Hwang, J.Y. and Kwak, H.G. (2018), "FE analysis of circular CFT columns considering bond-slip effect: Evaluation of ultimate strength", J. Constr. Steel Res., 145, 266-276. https://doi.org/10.1016/j.jcsr.2018.02.033
  14. Ichinose, L.H., Watanabe, E. and Nakai, H. (2001), "An experimental study on creep of concrete filled steel pipes", J. Constr. Steel Res., 57(4), 453-466. https://doi.org/10.1016/S0143-974X(00)00021-3.
  15. Kabir, A.F. (1977), "Nonlinear analysis of reinforced concrete panels, slabs and shells for time-dependent effects", University of California, Berkeley.
  16. Kim, C.S., Park, H.G., Choi, I.R. and Chung, K.S. (2017), "Effect of sustained load on ultimate strength of high-strength composite columns using 800-MPa steel and 100-MPa concrete", J. Struct. Eng., 143(3), 04016189. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001676.
  17. Kwak, H.G. and Seo, Y.J. (2000), "Long-term behavior of composite girder bridges", Comput. Struct., 74(5), 583-599. https://doi.org/10.1016/S0045-7949(99)00064-4.
  18. Kwon, S.H., Kim, Y.Y. and Kim, J.K. (2005), "Long-term behaviour under axial service loads of circular columns made from concrete filled steel tubes", Mag. Concrete Res., 57(2), 87-99. https://doi.org/10.1680/macr.2005.57.2.87.
  19. Leon, R.T. and Aho, M. (2002), "Towards new design provisions for composite columns", Compos. Constr. Steel Concrete IV, 518-527. https://doi.org/10.1061/40616(281)45.
  20. Lu, Y.Q. and Kennedy, D.L. (1994), "The flexural behaviour of concrete-filled hollow structural sections", Can. J. Civil Eng., 21(1), 111-130. https://doi.org/10.1139/l94-011.
  21. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  22. Matsui, C. (1995), "Slender concrete filled steel tubular columns combined compressionsnd bending, strutural steel", Steel Concerte Compos. Struct., 3, 29-36.
  23. Morino, S. and Tsuda, K. (2003), "Design and construction of concrete-filled steel tube column system in Japan", Earthq. Eng. Eng. Seismol., 4(1), 51-73.
  24. Ngo, D. and Scordelis, A.C. (1967), "Finite element analysis of reinforced concrete beams", J. Proceed., 643), 152-163.
  25. Owen, D.R.J. (1980), Finite Elements in Plasticity, Theory and Practice, Pineridge Press 91 West Cross Lane, West Cross, Swansea, U.K.
  26. Task Committee on Finite Element Analysis of Reinforced Concrete Structures, and Bazant, Z.P. (1982), State-of-the-Art Report on Finite Element Analysis of Reinforced Concrete, American Society of Civil Engineers, New York, NY
  27. Terrey, P.J., Bradford, M.A. and Gilbert, R.I. (1994), "Creep and shrinkage of concrete in concrete-filled circular steel tubes", Proceeding of 6th International Symposium on Tubular Structures, 293-298.
  28. Uy, B. (2001), "Static long-term effects in short concrete-filled steel box columns under sustained loading", Struct. J., 98(1), 96-104.
  29. Wang, Y.Y., Geng, Y., Chen, J. and Zhao, M.Z. (2019). Testing and analysis on nonlinear creep behaviour of concrete-filled steel tubes with circular cross-section", Eng. Struct., 185, 26-46. https://doi.org/10.1016/j.engstruct.2019.01.065.
  30. Xiao, Y., He, W. and Choi, K.K. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng., 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488).
  31. Yamada, C., Morino, S., Kawaguchi, J. and Machida, T. (1995), "Creep behavior of concrete-filled steel tubular members", Research Reports of the Faculty of Engineering, Mie University, 20, 83-98.
  32. Zhu, J.Y. and Chan, T.M. (2019), "Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression", J. Constr. Steel Res., 162, 105729. https://doi.org/10.1016/j.jcsr.2019.105729.