DOI QR코드

DOI QR Code

Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer

  • 투고 : 2020.05.23
  • 심사 : 2021.08.09
  • 발행 : 2021.09.25

초록

This investigation aims to examine the vibration phenomenon in 2D transversely isotropic homogeneous Euler-Bernoulli nonlocal nanobeam with laser pulse with new modified three-phase lag Green Naghdi (TPL GN) model. The model contains a material length scale parameter that can capture the size effect, using the nonlocal theory of thermoelasticity. Temperature is assumed to vary sinusoidally. Laplace Transforms are used to derive the non-dimensional expressions for lateral deflection, axial displacement, temperature distribution, axial stress, and thermal moment in the transformed domain, and numerical inversion techniques are used to find the expressions in the physical domain. The ends of the nanobeam are considered to be simply supported and have a constant temperature. Effect of new modified TPL GN heat transfer and nonlocal parameter is represented graphically for lateral deflection, axial displacement, temperature distribution, axial stress, and thermal moment using the MATLAB software. Few specific cases are also derived.

키워드

참고문헌

  1. Abbas, I.A. (2018), "Free vibrations of nanoscale beam under two-temperature green and naghdi", Int. J. Acoust. Vib., 23(3), 289-293. https://doi.org/10.20855/ijav.2018.23.31051.
  2. Abbas, I. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimensional Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
  3. Abd-Elaziz, E.M. and Othman, M.I. (2019), "Effect of thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation", J. Appl. Math. Mech., 99(8). https://doi.org/10.1002/zamm.201900079.
  4. Abouelregal, A.E. (2019), "Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives", Indian J. Phys., https://doi.org/10.1007/s12648-019-01635-z.
  5. Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.
  6. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35). https://doi.org/10.1142/S0217984919504396.
  7. Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020b), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328-348. https://doi.org/10.3390/pr8030328.
  8. Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusionthermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.
  9. Chakraborty, A. (2007), "Wave propagation in anisotropic media with non-local elasticity", Int. J. Solids Struct., 44, 5723-5741. https://doi.org/10.1016/j.ijsolstr.2007.01.024.
  10. Codarcea-Munteanu, L. and Marin, M. (2019), "A study on the thermoelasticity of three-phase-lag dipolar materials with voids. bound", Bound. Value Problems, https://doi.org/10.1186/s13661-019-1250-9.
  11. Dhaliwal, R. and Singh, A. (1980), Dynamic coupled thermoelasticity. New Delhi,India: Hindustan Publication Corporation.
  12. Eringen, A.C. (1966a), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
  13. Eringen, A.C. (1966b), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4(2), 179-202. https://doi.org/10.1016/0020-7225(66)90022-X.
  14. Eringen, A.C. (1966c), "Theory of micropolar fluids", J. Math. Mech., 16(1), 1-18. https://doi.org/10.1512/iumj.1967.16.16001.
  15. Hobiny, A., Alzahrani, F.S. and Abbas, I. (2020), "Three-phase lag model of thermo-elastic interaction in a 2D porous material due to pulse heat flux", Int. J. Numer. Method. Heat Fluid Fl., ahead-of-print, ahead-of-p.
  16. Kaur, I., Lata, P. and Singh, K. (2021a), "Effect of laser pulse in modified TPL GN-yhermoelastic yransversely isotropic euler-bernoulli nanobeam", Soft Computing for Intelligent Systems, 59-81. https://doi.org/10.1007/978-981-16-1048-6_6.
  17. Kaur, I., Lata, P. and Singh, K. (2021b), "Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature", Arch. Appl. Mech., 91(4), 1697-1711. https://doi.org/10.1007/s00419-020-01848-3.
  18. Kaur, I., Lata, P. and Singh, K. (2021c), "Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory", Arch. Appl.Mech., 91(1), 317-341. https://doi.org/10.1007/s00419-020-01771-7.
  19. Kaur, I., Singh, K. and Ghita, G.M. (2021d), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech., 1-13. https://doi.org/10.1002/zamm.202100108.
  20. Lata, P. and Kaur, I. (2019a), "A Study of transversely isotropic thermoelastic beam with green-naghdi type-II and type-III theories of thermoelasticity", Appl. Appl. Math.: Int. J., (AAM), 14(1), 270-283.
  21. Lata, P. and Kaur, I. (2019a), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.
  22. Lata, P. and Kaur, I. (2019b), "Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. https://doi.org/10.12989/amr.2019.8.2.083.
  23. Lata, P. and Kaur, I. (2019c), "Study of transversely isotropic thick circular plate due to ring load with two temperature & green nagdhi theory of type-I, II and III", Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), 1753-1767. Amity University Rajasthan, Jaipur-India.
  24. Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.
  25. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
  26. Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus De L Academie, 321, 475-480.
  27. Marin, M. (2010a), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib.Control: SAGE J., 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  28. Marin, M. (2010b), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal. Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
  29. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dynam. Syst. Appl., 25(1-2), 175-196.
  30. Press, W., S.A.Teukolshy, W.T.Vellerling, and Flannery, B. (1986), Numerical recipes in Fortran,. Cambridge University Press Cambridge.
  31. Rao, S. (2007), Vibration of continuous systems. New Jersey: John Wiley & sons.,.
  32. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transfer Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622.
  33. Sharma, J.N. and Grover, D. (2011), "Thermoelastic vibrations in micro-/nano-scale beam resonators with voids", J. Sound Vib., 330(12), 2964-2977. https://doi.org/10.1016/j.jsv.2011.01.012.
  34. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii "Ovidius" Constanta - Seria Matematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.
  35. Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
  36. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic vibration of an axially moving microbeam subjected to sinusoidal pulse heating", Int. J. Struct. Stab. Dynam., 15(6), 1-15. https://doi.org/10.1142/S0219455414500813.
  37. Zenkour, A.M. and Mashat, D.S. (2020), "A laser pulse impactful on a half-space using the modified TPL G-N models", Scientific Reports, 10(1), 4417. https://doi.org/10.1038/s41598-020-61249-y.