References
- Abbas, I.A. (2018), "Free vibrations of nanoscale beam under two-temperature green and naghdi", Int. J. Acoust. Vib., 23(3), 289-293. https://doi.org/10.20855/ijav.2018.23.31051.
- Abbas, I. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E-Low-Dimensional Syst. Nanostruct., 87, 254-260. https://doi.org/10.1016/j.physe.2016.10.048.
- Abd-Elaziz, E.M. and Othman, M.I. (2019), "Effect of thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation", J. Appl. Math. Mech., 99(8). https://doi.org/10.1002/zamm.201900079.
- Abouelregal, A.E. (2019), "Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives", Indian J. Phys., https://doi.org/10.1007/s12648-019-01635-z.
- Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.
- Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35). https://doi.org/10.1142/S0217984919504396.
- Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020b), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328-348. https://doi.org/10.3390/pr8030328.
- Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusionthermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.
- Chakraborty, A. (2007), "Wave propagation in anisotropic media with non-local elasticity", Int. J. Solids Struct., 44, 5723-5741. https://doi.org/10.1016/j.ijsolstr.2007.01.024.
- Codarcea-Munteanu, L. and Marin, M. (2019), "A study on the thermoelasticity of three-phase-lag dipolar materials with voids. bound", Bound. Value Problems, https://doi.org/10.1186/s13661-019-1250-9.
- Dhaliwal, R. and Singh, A. (1980), Dynamic coupled thermoelasticity. New Delhi,India: Hindustan Publication Corporation.
- Eringen, A.C. (1966a), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
- Eringen, A.C. (1966b), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4(2), 179-202. https://doi.org/10.1016/0020-7225(66)90022-X.
- Eringen, A.C. (1966c), "Theory of micropolar fluids", J. Math. Mech., 16(1), 1-18. https://doi.org/10.1512/iumj.1967.16.16001.
- Hobiny, A., Alzahrani, F.S. and Abbas, I. (2020), "Three-phase lag model of thermo-elastic interaction in a 2D porous material due to pulse heat flux", Int. J. Numer. Method. Heat Fluid Fl., ahead-of-print, ahead-of-p.
- Kaur, I., Lata, P. and Singh, K. (2021a), "Effect of laser pulse in modified TPL GN-yhermoelastic yransversely isotropic euler-bernoulli nanobeam", Soft Computing for Intelligent Systems, 59-81. https://doi.org/10.1007/978-981-16-1048-6_6.
- Kaur, I., Lata, P. and Singh, K. (2021b), "Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature", Arch. Appl. Mech., 91(4), 1697-1711. https://doi.org/10.1007/s00419-020-01848-3.
- Kaur, I., Lata, P. and Singh, K. (2021c), "Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory", Arch. Appl.Mech., 91(1), 317-341. https://doi.org/10.1007/s00419-020-01771-7.
- Kaur, I., Singh, K. and Ghita, G.M. (2021d), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech., 1-13. https://doi.org/10.1002/zamm.202100108.
- Lata, P. and Kaur, I. (2019a), "A Study of transversely isotropic thermoelastic beam with green-naghdi type-II and type-III theories of thermoelasticity", Appl. Appl. Math.: Int. J., (AAM), 14(1), 270-283.
- Lata, P. and Kaur, I. (2019a), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.
- Lata, P. and Kaur, I. (2019b), "Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source", Adv. Mater. Res., 8(2), 83-102. https://doi.org/10.12989/amr.2019.8.2.083.
- Lata, P. and Kaur, I. (2019c), "Study of transversely isotropic thick circular plate due to ring load with two temperature & green nagdhi theory of type-I, II and III", Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), 1753-1767. Amity University Rajasthan, Jaipur-India.
- Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus De L Academie, 321, 475-480.
- Marin, M. (2010a), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib.Control: SAGE J., 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
- Marin, M. (2010b), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal. Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.
- Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dynam. Syst. Appl., 25(1-2), 175-196.
- Press, W., S.A.Teukolshy, W.T.Vellerling, and Flannery, B. (1986), Numerical recipes in Fortran,. Cambridge University Press Cambridge.
- Rao, S. (2007), Vibration of continuous systems. New Jersey: John Wiley & sons.,.
- Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transfer Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622.
- Sharma, J.N. and Grover, D. (2011), "Thermoelastic vibrations in micro-/nano-scale beam resonators with voids", J. Sound Vib., 330(12), 2964-2977. https://doi.org/10.1016/j.jsv.2011.01.012.
- Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii "Ovidius" Constanta - Seria Matematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.
- Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic vibration of an axially moving microbeam subjected to sinusoidal pulse heating", Int. J. Struct. Stab. Dynam., 15(6), 1-15. https://doi.org/10.1142/S0219455414500813.
- Zenkour, A.M. and Mashat, D.S. (2020), "A laser pulse impactful on a half-space using the modified TPL G-N models", Scientific Reports, 10(1), 4417. https://doi.org/10.1038/s41598-020-61249-y.