References
- Abbasi, M., Khezri, M., Rasmussen, K.J.R. and Schafer, B.W. (2018), "Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method", Thin-Wall. Struct., 124, 58-71. https://doi.org/10.1016/j.tws.2017.11.046.
- AISI (American Iron and Steel Institute) D100-08 (2008), Excerpts-gross section property tables, cold-formed steel design manual. Part I: Dimensions and properties.
- AISI (American Iron and Steel Institute) (2001), North American specification for the design of cold-formed steel structural members.
- AISC (American Institute of Steel Construction) (1991), LRFD, Volume 1, Structural members, specifications and code, Manual of Steel Construction.
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503.
- Artar, M. and Daloglu, A.T. (2019), "Optimum design of steel space truss towers under seismic effect using Jaya algorithm", Struct. Eng. Mech., 71(1),1-12. https://doi.org/10.12989/sem.2019.71.1.001.
- Artar M. and Daloglu A.T. (2020), "A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm", Struct. Eng. Mech., 73(2), 153-165. https://doi.org/10.12989/sem.2020.73.2.153.
- ASCE (2005), Minimum design loads for building and other structures, ASCE7-05, USA.
- Aydogdu, I, Carbas, S. and Akin., A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24(1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
- Atmaca, B., Dede, T. and Grzywinski, M. (2020), "Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2020.34.6.853.
- Carbas, S. and Aydogdu, I. (2017), "Utilization of harmony search algorithm in optimal structural design of cold-formed steel structures" , Adv. Intel. Syst. Comput., 514, 240-251. https://doi.org/10.1007/978-981-10-3728-3_24.
- Carbas, S., Aydogdu, I., Tokdemir, T. and Saka, M.P. (2014), " Design optimization of low-rise cold-formed steel frames with thin-walled sections using the artificial bee colony algorithm", Civil-Comp Proceedings, 106.
- Carbas, S. and Artar, M. (2021) "Optimum design of cold-formed steel frames via five novel nature-inspired metaheuristic algorithms under consideration of seismic loading", Structures, 33, 4011-4030. https://doi.org/10.1016/j.istruc.2021.06.096.
- Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163.
- Degertekin, S.O., Hayalioglu, M.S. and Ulker, M. (2008), "A hybrid-tabu simulated annealing heuristic algirthm for optimum design of steel frames", Steel Compos. Struct., 8(6), 475-490. https://doi.org/10.12989/scs.2008.8.6.475.
- Dede, T., Grzywinski, M. and Selejdak, J. (2020), "Continuous size optimization of large-scale dome structures with dynamic constraints", Struct. Eng. Mech., 73(4), 397-405. https://doi.org/10.12989/sem.2020.73.4.397.
- Degertekin, S.O. (2012), "Optimum design of geometrically nonlinear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505.
- Degertekin, S.O., Lamberti, L. and Ugur, I.B. (2018), "Sizing, layout and topology design optimization of truss structures using the Jaya algorithm", Appl. Soft Comput., 70, 903-928. https://doi.org/10.1016/j.asoc.2017.10.001.
- Grzywinski, M., Dede, T. and Ozdemir, Y.I. (2019), "Optimization of the braced dome structures by using Jaya algorithm with frequency constraints", Steel Compos. Struct., 30(1), 47-55. https://doi.org/10.12989/scs.2019.30.1.047.
- Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323.
- Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J Global Optim., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x.
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783.
- Kaveh A., Dadras, A. and Geran Malek, N. (2019), "Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms", Eng. with Comput., 35, 813-832. https://doi.org/10.1007/s00366-018-0634-2.
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.
- MATLAB (2009), "The Language of Technical Computing" The Mathworks, Natick, MA, USA.
- Meza, F.J., Becque, J. and Hajirasouliha, I. (2020), "Experimental study of cold-formed steel built-up beams", J. Struct. Eng., 146(7), 04020126. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002677.
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431.
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rao, R.V. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
- Rao, R.V., Rai, D.P. and Balic, J. (2016), "Surface grinding process optimization using Jaya Algorithm", Comput. Intelligence in Data Mining, 411, 487-495. https://doi.org/10.1007/978-81-322-2731-1_46.
- Saka, M.P., Carbas, S. Aydogdu, I., Akin, A. and Geem, Z.W. (2015), "Comparative study on recent metaheuristic algorithms in design optimization of cold-formed steel structures", Comput. Method. Appl. Sci., 38, 145-173. https://doi.org/10.1007/978-3-319-18320-6_9.
- SAP2000 (2008), "Integrated Finite Elements Analysis and Design of Structures", Computers and Structures, Inc., Berkeley, CA, USA.
- Selvaraj, S. and Madhavan, M. (2019) "Structural design of coldformed steel face-to-face connected built-up beams using direct strength method", J. Constr. Steel Res., 160, 613-628. https://doi.org/10.1016/j.jcsr.2019.05.053.
- Selvaraj, S. and Madhavan, M. (2021a) "Design of cold-formed steel back-to-back connected built-up beams", J. Constr. Steel Res., 181, 106623. https://doi.org/10.1016/j.jcsr.2021.106623.
- Selvaraj, S. and Madhavan, M. (2021b) "Design of cold-formed steel built-up columns subjected to local-global interactive buckling using direct strength method", Thin-Wall. Struct., 159, 107305. https://doi.org/10.1016/j.tws.2020.107305.
- Shallan, O., Maaly, HM., Sagiroglu, M. and Hamdy, O. (2019), "Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms", Struct. Eng. Mech., 70(2), 221-231. https://doi.org/10.12989/sem.2019.70.2.221.
- Shallan, O., Maaly, H.M. and Hamdy, O. (2018), "A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms", Struct. Eng. Mech., 66(2), 173-183. https://doi.org/10.12989/sem.2018.66.2.173.
- Topal, U., Trung, V.D., Dede, T. and Nazarimofrad, E. (2018), "Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO", Struct. Eng. Mech., 67(6), 617-628. https://doi.org/10.12989/sem.2018.67.6.617.
- Wang, L. and Young, B. (2016), "Behavior of cold-formed steel built-up sections with intermediate stiffeners under bending. I: Tests and numerical validation", J. Struct. Eng., 142(3), 04015150. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001428.
- Wang, L. and Young, B. (2018), "Behaviour and design of cold-formed steel built-up section beams with different screw arrangements", Thin-Wall. Struct., 131,16-32. https://doi.org/10.1016/j.tws.2018.06.022.