DOI QR코드

DOI QR Code

A numerical study on the plastic rotation capacity of CFRP-confined rectangular RC columns

  • Received : 2019.12.05
  • Accepted : 2021.08.05
  • Published : 2021.09.25

Abstract

To perform a nonlinear analysis of building frames in their seismic performance evaluation program, appropriate force-deformation curves of the structural members in linear and nonlinear phases which represent their actual behavior are required. Although these curves have been provided for common existing RC elements prior to retrofitting in available instructions, the codes are silent about appropriate practical models for strengthened elements. In this regard, a comprehensive numerical study is conducted in the Finite Element (FE) software VecTor2 to investigate the effects of various influential parameters on the moment-rotation behavior of CFRP-confined rectangular RC columns. The investigated parameters are cross-sectional dimensions, longitudinal and transverse reinforcement ratios, the level of column axial load, concrete compressive strength, and the effective confinement provided by external CFRP wraps. Then, through the idealization of the obtained moment-rotation curves, the influence of the aforementioned parameters on the plastic rotation capacity of the columns as one of the main required parameters to define the nonlinear behavior of the retrofitted columns is investigated. Accordingly, column axial load intensity, shear force, effective confinement, and column depth are found to be the major effective parameters on the plastic rotation capacity of the columns. Finally, a practical method consistent with ASCE 41-13 is presented to estimate the plastic rotation capacity of CFRP-confined columns.

Keywords

References

  1. ACI 440 (2017), Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, American Concrete Institute; Farmington Hills, MI, USA.
  2. Alvarez, J.C., Brena, S.F. and Arwade, S.R. (2018), "Nonlinear backbone modeling of concrete columns retrofitted with fiber-reinforced polymer or steel jackets", ACI Struct. J., 115(1), 53-64. https://doi.org/10.14359/51700779.
  3. Anagnostou, E. and Rousakis, T.C. (2013), "Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars under cyclic lateral loading", Eng. Struct., 57, 199-212. https://doi.org/10.1016/j.engstruct.2013.09.021.
  4. ASCE-SEI 41 (2013), American Society of Civil Engineers: seismic evaluation and retrofit of existing buildings, USA.
  5. Bentz, E.C. (2000), "Sectional analysis of reinforced concrete members", University of Toronto, Toronto, Canada.
  6. Biskinis, D. and Fardis, M.N. (2013), "Models for FRP-wrapped rectangular RC columns with continuous or lap-spliced bars under cyclic lateral loading", Eng. Struct., 57, 199-212. https://doi.org/10.1016/j.engstruct.2013.09.021.
  7. Bousias, S., Spathis, A. and Fardis, M.N. (2007), "Seismic retrofitting of columns with lap spliced smooth bars through FRP or concrete jackets", J. Earthq. Eng., 11(5), 653-674. https://doi.org/10.1080/13632460601125714.
  8. Bournas, D.A., Lontou, P.V., Papanicolaou, C. and Triantafillou, T. (2007), "Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns", ACI Struct. J., 104(6), 740-748.
  9. Cao, Y.G., Jiang, C.H. and Wu, Y.F. (2016), "Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer", Polymers, 8(5), 1-17. https://doi.org/10.3390/polym8050186.
  10. Demers, M. and Neale, K.W. (1999), "Confinement of reinforced concrete columns with fibre-reinforced composite sheets-an experimental study", Can. J. Civil Eng., 26(2), 226-241. https://doi.org/10.1139/l98-067.
  11. Fanaradelli H, Rousakis TC. (2020), "3D finite element pseudodynamic analysis of deficient RC rectangular columns confined with fiber reinforced polymers under axial compression", Polymers, 12(11), 2546. https://doi.org/10.3390/polym12112546
  12. Farrokh Ghatte, T.D., Comert, M., Demir, C. and Ilki, A. (2016), "Evaluation of FRP confinement models for substandard rectangular RC columns based on full-scale reversed cyclic lateral loading tests in strong and weak directions", Polymers, 8(9), 323. https://doi.org/10.3390/polym8090323.
  13. Goksu, C., Polat, A. and Ilki, A. (2011), "Attempt for seismic retrofit of existing substandard RC members under reversed cyclic flexural effects", J. Compos. Constr., 16(3), 286-299. https://doi.org/10.1061/(asce)cc.1943-5614.0000256.
  14. Grammatikou, S., Fardis, M.N. and Biskinis, D. (2018), "Models of the flexure-controlled strength, stiffness and cyclic deformation capacity of rectangular RC columns with smooth bars, including lap-splicing and FRP jackets", Bull. Earthq. Eng., 16(3), 341-375. https://doi.org/10.1007/s10518-017-0202-y
  15. Hadi, M.N. and Widiarsa, I.B.R. (2012), "Axial and flexural performance of square RC columns wrapped with CFRP under eccentric loading", J. Compos. Constr., 16(6), 640-649. https://doi.org/10.1061/(asce)cc.1943-5614.0000301.
  16. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2015), "Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading", J. Compos. Constr., 19(6), 04015004-1-16. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000557
  17. Hognestad, E. (1951), "Study of combined bending and axial load in reinforced concrete members", University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station, USA.
  18. Hu, D. and Barbato, M. (2014), "Simple and efficient finite element modeling of reinforced concrete columns confined with fiber-reinforced polymers", Eng. Struct., 72, 113-122. https://doi.org/10.1016/j.engstruct.2014.04.033.
  19. Juntanalikit, P., Jirawattanasomkul, T. and Pimanmas, A. (2016), "Experimental and numerical study of strengthening non-ductile RC columns with and without lap splice by Carbon Fiber Reinforced Polymer (CFRP) jacketing", Eng. Struct., 125, 400-418. https://doi.org/10.1016/j.engstruct.2016.07.019.
  20. Kwon, M., Seo, H. and Kim, J. (2016), "Seismic performance of RC-column wrapped with Velcro", Struct. Eng. Mech., 58(2), 379-395. https://doi.org/10.12989/sem.2016.58.2.379.
  21. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6), 471-489. https://doi.org/10.1016/s0950-0618(03)00045-x.
  22. Li, J. and Hadi, M.N.S. (2003), "Behaviour of externally confined high-strength concrete columns under eccentric loading", Compos. Struct., 62(2), 145-153. https://doi.org/10.1016/s0263-8223(03)00109-0.
  23. Li, B. and Harries, K.A. (2018), "Seismic performance assessment of flexure-dominate FRP-confined RC columns using plastic rotation angle", Eng. Struct., 172, 453-471. https://doi.org/10.1016/j.engstruct.2018.06.046.
  24. Li. P. and Wu, Y.F. (2015), "Stress-strain model of FRP confined concrete under cyclic loading", Compos. Struct., 134, 60-71. https://doi.org/10.1016/j.compstruct.2015.08.056.
  25. Liu, H., He, M.H., Luan, Y.Q., Guo, J. and Liu, L.L. (2013), "A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming", J. Zhejiang Univ. Sci. A, 14(12), 856-866. https://doi.org/10.1631/jzus.a1300185.
  26. Mohebi, B., Hosseinifard, S.M. and Bastami, M. (2016), "Plastic hinge characteristics of RC rectangular columns with Fiber Reinforced Polymer (FRP)", Comput. Concrete, 18(6), 853-876. https://doi.org/10.12989/cac.2016.18.6.853.
  27. Montoya, E., Vecchio, F.J. and Sheikh, S.A. (2001), "Compression field modeling of confined concrete", Struct. Eng. Mech., 12(3), 231-248. https://doi.org/10.12989/sem.2001.12.3.231.
  28. Montoya, E., Vecchio, F.J. and Sheikh, S.A. (2004), "Numerical evaluation of the behaviour of steel-and FRP-confined concrete columns using compression field modelling", Eng. Struct., 26(11), 1535-1545. https://doi.org/10.1016/j.engstruct.2004.05.009.
  29. Najafgholipour, M.A, Zahabi, S. and Dehghan, S. (2018), "Statistical study on moment-rotation curves of FRP confined RC columns. concrete research quarterly journal", J. Guilan Univ., 11(3), 107-120. (In Persian)
  30. Ozbakkaloglu. T. and Akin, E. (2011), "Behavior of FRP-confined normal-and high-strength concrete under cyclic axial compression", J. Compos. Constr., 16(4), 451-463. https://doi.org/10.1061/(asce)cc.1943-5614.0000273.
  31. Ozcan, O., Binici, B. and Ozcebe, G. (2010), "Seismic strengthening of rectangular reinforced concrete columns using fiber reinforced polymers", Eng. Struct., 32(4), 964-973. https://doi.org/10.1016/j.engstruct.2009.12.021.
  32. Parvin, A. and Brighton, D. (2014), "FRP composites strengthening of concrete columns under various loading conditions", Polymers, 6(4), 1040-1056. https://doi.org/10.3390/polym6041040,
  33. Parvin, A. and Wang, W. (2001), "Behavior of FRP jacketed concrete columns under eccentric loading", J. Compos. Constr., 5(3), 146-152. https://doi.org/10.1061/(asce)1090-0268(2001)5:3(146).
  34. Panagiotakos, T.B. and Fardis, M.N. (2001), "Deformation of Reinforced Concrete Members at Yielding and Ultimate", ACI Struct. J., 98(2).
  35. Quiertant, M. and Clement, J.L. (2011), "Behavior of RC columns strengthened with different CFRP systems under eccentric loading", Constr. Build. Mater., 25(2), 452-460. https://doi.org/10.1016/j.conbuildmat.2010.07.034.
  36. Rahai, A. and Akbarpour, H. (2014), "Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending", Compos. Struct., 108, 538-546. https://doi.org/10.1016/j.compstruct.2013.09.015.
  37. Rousakis, T.C., Karabinis, A.I. and Kiousis, P.D. (2007), "FRP-confined concrete members: Axial compression experiments and plasticity modelling", Eng. Struct., 29(7), 1343-1353. https://doi.org/10.1016/j.engstruct.2006.08.006.
  38. Sadeghian, P., Rahai, A.R. and Ehsani, M.R. (2010), "Experimental study of rectangular RC columns strengthened with CFRP composites under eccentric loading", J. Compos. Constr., 14(4), 443-450. https://doi.org/10.1061/(asce)cc.1943-5614.0000100.
  39. Seyhan, E., Goksu, C., Uzunhasanoglu, A. and Ilki, A. (2015), "Seismic behavior of substandard RC columns retrofitted with embedded aramid fiber reinforced polymer (AFRP) reinforcement", Polymers, 7(12), 2535-2557. https://doi.org/10.3390/polym7121527.
  40. Shahawy, M., Mirmiran, A. and Beitelman, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. Part B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/s1359-8368(00)00021-4.
  41. Teng, J.G., Lam, L., Lin, G., Lu, J.Y. and Xiao, Q.G. (2015), "Numerical simulation of FRP-jacketed RC columns subjected to cyclic and seismic loading", J. Compos Constr., 20(1). https://doi.org/10.1061/(asce)cc.1943-5614.0000584
  42. Teng, J.G. and Xiao, Q.G. (2015), "Numerical simulation of FRP-jacketed RC columns subjected to cyclic and seismic loading", Eng. Struct., 97, 15-28. https://doi.org/10.1016/j.engstruct.2015.03.030
  43. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  44. VECTOR2 & FORMWORKS USER'S MANUAL (2013), Second Ed., P. S. Wong, F.J. Vecchio, H. Trommels August.
  45. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J. Proceedings, 83(2), 219-231. https://doi.org/10.14359/10416.
  46. Vuggumudi, S. and Alagusundaramoorthy, P. (2018), "FRP strengthened RC rectangular columns under combined axial and lateral loading: Analytical study", Structures, 14, 88-94. https://doi.org/10.1016/j.istruc.2018.02.007.
  47. Yalcin, C., Kaya, O. and Sinangil, M. (2008), "Seismic retrofitting of R/C columns having plain bars using CFRP sheets for improved strength and ductility", Constr. Build. Mater., 22(3), 295-307. https://doi.org/10.1016/j.conbuildmat.2006.08.017.
  48. Yoddumrong, P., Rodsin, K. and Katawaethwarag, S. (2020), "Seismic strengthening of low-strength RC concrete columns using low-cost glass fiber reinforced polymers (GFRPs)", Case Studies in Constr. Mater., 13, e00383. https://doi.org/10.1016/j.cscm.2020.e00383.
  49. Ziaadiny, H. and Abbasnia, R. (2016), "Unified cyclic stress-strain model for FRP-confined concrete circular, square and rectangular prisms", Struct. Concrete, 17(2), 220-234. https://doi.org/10.1002/suco.201500128.