Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 21808017). and Science and Technology Research Project of Chongqing Education Board (KJQN201901428).
References
- Abouelregal, A.E. and Zenkour, A.M. (2017), "Dynamic response of a nanobeam induced by ramp-type heating and subjected to a moving load", Microsyst. Technol., 23(12), 5911-5920. https://doi.org/10.1007/s00542-017-3365-1.
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint.e, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
- Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. https://doi.org/10.1007/s00707-017-2032-z.
- Barati, M.R. and Zenkour, A. (2019), Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran J. Sci. Technol. T. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
- Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F. P. and He, X.Y. (2021a), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Sci. Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-88146-2.
- Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P. and He, X. (2021b), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Sci. Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-83376-w.
- Dai, Z., Xie, J., Chen, Z., Zhou, S., Liu, J., Liu, W. and Ren, X. (2021), "Improved energy storage density and efficiency of (1-x) Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3-xBiMg2/3Nb1/3O3 lead-free ceramics", Chem. Eng. J., 410, 128341. https://doi.org/10.1016/j.cej.2020.128341.
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
- Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
- Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.
- Ebrahimi, F. and Barati, M.R. (2019c), "Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal-Couple Stress and Surface Energy Effects", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
- Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
- Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.
- Fang, J., Liu, C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of single-delay differential equations", Mediterranean J. Math., 17(1), 1-15. https://doi.org/10.1007/s00009-019-1452-5.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020b), "Nonlinear vibration characteristics of refined higher-order multi-phase piezo-magnetic nanobeams", Eur. Phys. J. Plus, 135(5), 439. https://doi.org/10.1140/epjp/s13360-020-00399-4.
- Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020c), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Design, 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
- Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020d), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
- Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020e), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020f). "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020g), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monit. Maint., 7(2), 69-84. https://doi.org/10.12989/smm.2020.7.2.069.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.
- Guo, X., Liu, J., Dai, L., Liu, Q., Fang, D., Wei, A. and Wang, J. (2021), "Friction-wear failure mechanism of tubing strings used in high-pressure, high-temperature and high-yield gas wells", Wear, 468, 203576. https://doi.org/10.1016/j.wear.2020.203576.
- Hou, C.C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of pantograph type differential equations", Math. Method. Appl. Sci., 43(6), 3369-3374. https://doi.org/10.1002/mma.6126.
- Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2021), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. https://doi.org/10.1177%2F1099636219842290. https://doi.org/10.1177%2F1099636219842290
- Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory", Eur. Phys. J. Plus, 132(5), 200. https://doi.org/10.1140/epjp/i2017-11466-0.
- Kovalnogov, V. N., Simos, T. E. and Tsitouras, C. (2021), "Runge-Kutta pairs suited for SIR-type epidemic models", Math. Method. Appl. Sci., 44(6), 5210-5216. https://doi.org/10.1002/mma.7104.
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, D.S., Yuan, Y.Q., Li, K.P. and Li, H.N. (2017), "Experimental axial force identification based on modified Timoshenko beam theory", Struct. Monit. Maint., 4(2), 153-173. https://doi.org/10.12989/smm.2017.4.2.153.
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
- Li, T., Dai, Z., Yu, M. and Zhang, W. (2021), "Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths", Eng. Appl. Comput. Fluid Mech., 15(1), 549-560. https://doi.org/10.1080/19942060.2021.1895321.
- Lou, J., He, L., Wu, H. and Du, J. (2016), "Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory", Compos. Struct., 142, 226-237. https://doi.org/10.1016/j.compstruct.2016.01.083.
- Martinez-Criado, G. (2016), "Application of micro-and nanobeams for materials science", Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications, 1505-1539. https://doi.org/10.1007/978-3-319-14394-1_46.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Medvedeva, M., Simos, T.E., Tsitouras, C. and Katsikis, V. (2021a), "Direct estimation of SIR model parameters through second-order finite differences", Math. Method. Appl. Sci., 44(5), 3819-3826. https://doi.org/10.1002/mma.6985.
- Medvedeva, M.A., Katsikis, V. N., Mourtas, S.D. and Simos, T.E. (2021b), "Randomized time-varying knapsack problems via binary beetle antennae search algorithm: Emphasis on applications in portfolio insurance", Math. Method. Appl. Sci., 44(2), 2002-2012. https://doi.org/10.1002/mma.6904.
- Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Design, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
- Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Physics A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
- Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
- Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
- Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
- Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
- Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89.
- Shyamala, P., Mondal, S. and Chakraborty, S. (2018), "Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm", Struct. Monit. Maint., 5(2), 243-260. https://doi.org/10.12989/smm.2018.5.2.243.
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027.
- Tu, J., Zhang, J., Zhu, Q., Liu, F. and Luo, W. (2018), "The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell", Struct. Monit. Maint., 5(2), 297-311. https://doi.org/10.12989/smm.2018.5.2.297.
- Wang, L., Peng, Y., Xie, Y., Chen, B. and Du, Y. (2021), "A new iteration regularization method for dynamic load identification of stochastic structures", Mech, Syst, Signal Pr., 156, 107586. https://doi.org/10.1016/j.ymssp.2020.107586.
- Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.
- Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 053. https://doi.org/10.12989/sem.2018.68.1.053.
- Yan, D., Wang, W. and Chen, Q. (2020), "Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearing-seal system", Chaos, Solitons & Fractals, 133, 109640. https://doi.org/10.1016/j.chaos.2020.109640.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
- Zeighampour, H. and Shojaeian, M. (2017), "Buckling analysis of functionally graded sandwich cylindrical micro/nanoshells based on the couple stress theory", J. Sandw. Struct. Mater., 1099636217703912. https://doi.org/10.1177%2F1099636217703912. https://doi.org/10.1177%2F1099636217703912
- Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020a), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.
- Zhao, X., Zhu, W.D. and Li, Y.H. (2020b), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.
- Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.
- Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H. and Guo, S. (2021a), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
- Zhang, T., Wu, X., Shaheen, S.M., Rinklebe, J., Bolan, N.S., Ali, E. F. and Tsang, D.C. (2021b), "Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure", J. Hazardous Mater., 416, 125738. https://doi.org/10.1016/j.jhazmat.2021.125738.
- Zhang, J., Wang, M., Tang, Y., Ding, Q., Wang, C., Huang, X. and Yan, F. (2021c), "Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator", IEEE T. Instrum. Measurement, 70, 1-9. https://doi.org/10.1109/TIM.2021.3067183.