DOI QR코드

DOI QR Code

Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment

  • Shi, Jianwei (School of Chemistry and Chemical Engineering, Yangtze Normal University) ;
  • Teng, Xiaoxu (School of Chemistry and Chemical Engineering, Yangtze Normal University)
  • Received : 2020.03.21
  • Accepted : 2021.07.01
  • Published : 2021.09.25

Abstract

By using differential quadrature method (DQM), forced vibrational behavior of a porous functionally graded (FG) cylindrical scale-dependent shell in thermal environment and under a moving point load having constant velocity has been researched. Within the micro-size shell, porosities exist with even or uneven distributions. Accordingly, the material properties of the micro-size shell rely on porosities and may be defined utilizing refined power-law functions. Strain gradients have been incorporated because of the existence of size effects at micro scale. Established governing equations based on first-order shell theory have been arranged in Laplace form. Next, time responses of the micro-size shell have been calculated accomplishing inverse Laplace transform technique together with differential quadrature method (DQM). It may be understood that forced vibrational behaviors of micro-size shells are dependent on the load speed, strain gradient factor, pore volume, material gradation and temperature variation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 21808017). and Science and Technology Research Project of Chongqing Education Board (KJQN201901428).

References

  1. Abouelregal, A.E. and Zenkour, A.M. (2017), "Dynamic response of a nanobeam induced by ramp-type heating and subjected to a moving load", Microsyst. Technol., 23(12), 5911-5920. https://doi.org/10.1007/s00542-017-3365-1.
  2. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  3. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint.e, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  4. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  5. Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. https://doi.org/10.1007/s00707-017-2032-z.
  6. Barati, M.R. and Zenkour, A. (2019), Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran J. Sci. Technol. T. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  7. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
  8. Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F. P. and He, X.Y. (2021a), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Sci. Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-88146-2.
  9. Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P. and He, X. (2021b), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Sci. Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-83376-w.
  10. Dai, Z., Xie, J., Chen, Z., Zhou, S., Liu, J., Liu, W. and Ren, X. (2021), "Improved energy storage density and efficiency of (1-x) Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3-xBiMg2/3Nb1/3O3 lead-free ceramics", Chem. Eng. J., 410, 128341. https://doi.org/10.1016/j.cej.2020.128341.
  11. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  12. Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
  13. Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.
  14. Ebrahimi, F. and Barati, M.R. (2019c), "Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal-Couple Stress and Surface Energy Effects", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  15. Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
  16. Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.
  17. Fang, J., Liu, C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of single-delay differential equations", Mediterranean J. Math., 17(1), 1-15. https://doi.org/10.1007/s00009-019-1452-5.
  18. Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  19. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020b), "Nonlinear vibration characteristics of refined higher-order multi-phase piezo-magnetic nanobeams", Eur. Phys. J. Plus, 135(5), 439. https://doi.org/10.1140/epjp/s13360-020-00399-4.
  20. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020c), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Design, 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  21. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020d), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  22. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020e), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  23. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020f). "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.
  24. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020g), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monit. Maint., 7(2), 69-84. https://doi.org/10.12989/smm.2020.7.2.069.
  25. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.
  26. Guo, X., Liu, J., Dai, L., Liu, Q., Fang, D., Wei, A. and Wang, J. (2021), "Friction-wear failure mechanism of tubing strings used in high-pressure, high-temperature and high-yield gas wells", Wear, 468, 203576. https://doi.org/10.1016/j.wear.2020.203576.
  27. Hou, C.C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of pantograph type differential equations", Math. Method. Appl. Sci., 43(6), 3369-3374. https://doi.org/10.1002/mma.6126.
  28. Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2021), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. https://doi.org/10.1177%2F1099636219842290. https://doi.org/10.1177%2F1099636219842290
  29. Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory", Eur. Phys. J. Plus, 132(5), 200. https://doi.org/10.1140/epjp/i2017-11466-0.
  30. Kovalnogov, V. N., Simos, T. E. and Tsitouras, C. (2021), "Runge-Kutta pairs suited for SIR-type epidemic models", Math. Method. Appl. Sci., 44(6), 5210-5216. https://doi.org/10.1002/mma.7104.
  31. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  32. Li, D.S., Yuan, Y.Q., Li, K.P. and Li, H.N. (2017), "Experimental axial force identification based on modified Timoshenko beam theory", Struct. Monit. Maint., 4(2), 153-173. https://doi.org/10.12989/smm.2017.4.2.153.
  33. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
  34. Li, T., Dai, Z., Yu, M. and Zhang, W. (2021), "Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths", Eng. Appl. Comput. Fluid Mech., 15(1), 549-560. https://doi.org/10.1080/19942060.2021.1895321.
  35. Lou, J., He, L., Wu, H. and Du, J. (2016), "Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory", Compos. Struct., 142, 226-237. https://doi.org/10.1016/j.compstruct.2016.01.083.
  36. Martinez-Criado, G. (2016), "Application of micro-and nanobeams for materials science", Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications, 1505-1539. https://doi.org/10.1007/978-3-319-14394-1_46.
  37. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  38. Medvedeva, M., Simos, T.E., Tsitouras, C. and Katsikis, V. (2021a), "Direct estimation of SIR model parameters through second-order finite differences", Math. Method. Appl. Sci., 44(5), 3819-3826. https://doi.org/10.1002/mma.6985.
  39. Medvedeva, M.A., Katsikis, V. N., Mourtas, S.D. and Simos, T.E. (2021b), "Randomized time-varying knapsack problems via binary beetle antennae search algorithm: Emphasis on applications in portfolio insurance", Math. Method. Appl. Sci., 44(2), 2002-2012. https://doi.org/10.1002/mma.6904.
  40. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Design, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  41. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Physics A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  42. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  43. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  44. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  45. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  46. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  47. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  48. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  49. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  50. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  51. Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  52. Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
  53. Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
  54. Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89.
  55. Shyamala, P., Mondal, S. and Chakraborty, S. (2018), "Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm", Struct. Monit. Maint., 5(2), 243-260. https://doi.org/10.12989/smm.2018.5.2.243.
  56. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
  57. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027.
  58. Tu, J., Zhang, J., Zhu, Q., Liu, F. and Luo, W. (2018), "The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell", Struct. Monit. Maint., 5(2), 297-311. https://doi.org/10.12989/smm.2018.5.2.297.
  59. Wang, L., Peng, Y., Xie, Y., Chen, B. and Du, Y. (2021), "A new iteration regularization method for dynamic load identification of stochastic structures", Mech, Syst, Signal Pr., 156, 107586. https://doi.org/10.1016/j.ymssp.2020.107586.
  60. Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.
  61. Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 053. https://doi.org/10.12989/sem.2018.68.1.053.
  62. Yan, D., Wang, W. and Chen, Q. (2020), "Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearing-seal system", Chaos, Solitons & Fractals, 133, 109640. https://doi.org/10.1016/j.chaos.2020.109640.
  63. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  64. Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
  65. Zeighampour, H. and Shojaeian, M. (2017), "Buckling analysis of functionally graded sandwich cylindrical micro/nanoshells based on the couple stress theory", J. Sandw. Struct. Mater., 1099636217703912. https://doi.org/10.1177%2F1099636217703912. https://doi.org/10.1177%2F1099636217703912
  66. Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020a), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.
  67. Zhao, X., Zhu, W.D. and Li, Y.H. (2020b), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.
  68. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.
  69. Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H. and Guo, S. (2021a), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
  70. Zhang, T., Wu, X., Shaheen, S.M., Rinklebe, J., Bolan, N.S., Ali, E. F. and Tsang, D.C. (2021b), "Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure", J. Hazardous Mater., 416, 125738. https://doi.org/10.1016/j.jhazmat.2021.125738.
  71. Zhang, J., Wang, M., Tang, Y., Ding, Q., Wang, C., Huang, X. and Yan, F. (2021c), "Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator", IEEE T. Instrum. Measurement, 70, 1-9. https://doi.org/10.1109/TIM.2021.3067183.