DOI QR코드

DOI QR Code

A new procedure for post-buckling analysis of plane trusses using genetic algorithm

  • Received : 2020.01.20
  • Accepted : 2021.08.20
  • Published : 2021.09.25

Abstract

In this research, a new minimization-based controlled method was proposed to analyze steel plane truss structures undergoing large deformations. Non-linear solution was acquired by minimizing a constrained optimization problem via the genetic algorithm. The suggested procedure can directly predict buckling load and its corresponding displacements, and precisely trace equilibrium path of geometrically non-linear plane truss structures. A computer program was formed to anticipate both elastic pre- and post-buckling behaviors or any arbitrary point on equilibrium path of the structures subjected to abnormal loads. Notably, a load-deflection curve with multiple limit points and a complex snap-back phenomenon can be followed using the proposed method. Five truss examples were analyzed, and the acquired results were compared with those obtained by theoretical solution, modified arc-length, Newton-Raphson methods, and those reported in the literature to validate robustness and accuracy of the proposed procedure.

Keywords

References

  1. Akbas, S.D. (2018), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
  2. Bathe, K.-J. (2006). Finite element procedures. United States of America, Klaus-Jurgen Bathe.
  3. Bellini, P. and Chulya, A. (1987), "An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations", Comput. Struct., 26(1), 99-110. https://doi.org/10.1016/0045-7949(87)90240-9.
  4. Bostan, M., Afshar, M.H. and Khadem, M.J.E.O. (2015), "Extension of the hybrid linear programming method to optimize simultaneously the design and operation of groundwater utilization systems", Eng. Optm., 47(4), 550-560. https://doi.org/10.1080/0305215X.2014.905553.
  5. Bostan, M., Akhtari, A.A., Bonakdari, H. and Jalili, F.J.W. R.M. (2019), "Optimal design for shock damper with genetic algorithm to control water hammer effects in complex water distribution systems", 33(5), 1665-1681. https://doi.org/10.1007/s11269-019-2192-9.
  6. Crisfield, M. (1983), "An arc-length method including line searches and accelerations", Int. J. Numer. Meth. Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902.
  7. Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials, New York, John Wiley & Sons.
  8. Damil, N. and Potier-Ferry, M. (1990), "A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures", Int. J. Eng. Sci., 28(9), 943-957. https://doi.org/10.1016/0020-7225(90)90043-I.
  9. Forde, B.W. and Stiemer, S.F. (1987), "Improved arc length orthogonality methods for nonlinear finite element analysis", Comput. Struct., 27(5), 625-630. https://doi.org/10.1016/0045-7949(87)90078-2.
  10. Geers, M.A.(1999), "Enhanced solution control for physically and geometrically non-linear problems. Part I-the subplane control approach", Int. J. Numer. Meth. Eng., 46(2), 177-204. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<177::AID-NME668>3.0.CO;2-L.
  11. Habibi, A. and Bidmeshki, S. (2018), "A dual approach to perform geometrically nonlinear analysis of plane truss structures", Steel Compos. Struct., 27(1), 13-25. https://doi.org/10.12989/scs.2018.27.1.013.
  12. Habibi, A. and Bidmeshki, S. (2019), "An optimized approach for tracing pre- and post-buckling equilibrium paths of space trusses", Int. J. Struct. Stab. Dynam., 19(4), 1950040. https://doi.org/10.1142/S0219455419500408.
  13. Habibi, A. and Izadpanah, M. (2017), "Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads", Comput. Concrete, 20(1), 11-22. https://doi.org/10.12989/cac.2017.20.1.011.
  14. Habibi, A., Izadpanah, M. and Rohani, S. (2020), "Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code", Adv. Concrete Constr., 9(1), 23. https://doi.org/10.12989/acc.2020.9.1.023.
  15. Habibi, A., Saffari, H. and Izadpanah, M. (2019), "Optimal lateral load pattern for pushover analysis of building structures", Steel Compos. Struct., 32(1), 67-77. https://doi.org/10.12989/scs.2019.32.1.067.
  16. Hamdaoui, A., Braikat, B. and Damil, N. (2016), "Solving elastoplasticity problems by the asymptotic numerical method: Influence of the parameterizations", Finite Elem. Anal. Des., 115, 33-42. http://dx.doi.org/10.1016/j.finel.2016.03.001.
  17. Hellweg, H.B. and Crisfield, M. (1998), "A new arc-length method for handling sharp snap-backs", Comput. Struct., 66(5), 704-709. https://doi.org/10.1016/S0045-7949(97)00077-1.
  18. Holland, J.H. (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press.
  19. Izadpanah, M. and Habibi, A. (2015), "Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames", Struct. Eng. Mech., 56(2): 169-188. https://doi.org/10.12989/sem.2015.56.2.169.
  20. Katoch, S., Chauhan, S.S. and Kumar, V. (2020), "A review on genetic algorithm: past, present, and future", Multimedia Tools Appl., 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
  21. Kondoh, K. and Atluri, S. (1985), "Influence of local buckling on global instability: Simplified, large deformation, post-buckling analyses of plane trusses", Comput. Struct., 21(4), 613-627. https://doi.org/10.1016/0045-7949(85)90140-3.
  22. Liang, K., Ruess, M. and Abdalla, M. (2016), "Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses", Finite Elem. Anal. Des., 116, 38-54. https://doi.org/10.1016/j.finel.2016.03.006.
  23. Mahdavi, S.H., Razak, H.A., Shojaee, S. and Mahdavi, M.S. (2015), "A comparative study on application of Chebyshev and spline methods for geometrically non-linear analysis of truss structures", Int. J. Mech. Sci., 101, 241-251. https://doi.org/10.1016/j.ijmecsci.2015.08.001.
  24. Mansouri, I. and Saffari, H. (2012), "An efficient nonlinear analysis of 2D frames using a Newton-like technique", Arch. Civil Mech. Eng., 12(4), 485-492. http://dx.doi.org/10.1016/j.acme.2012.07.003.
  25. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/scs.2017.25.4.485.
  26. Oveisi, A., Nestorovic, T. and Nguyen, N.L. (2017), "Semi-analytical modeling and vibration control of a geometrically nonlinear plate", Int. J. Struct. Stab. Dynam., 17(4), 1771003. https://doi.org/10.1142/S0219455417710031.
  27. Papadrakakis, M. (1983), "Inelastic post-buckling analysis of trusses", J. Struct. Eng., 109(9), 2129-2147. https://doi.org/10.1061/(ASCE)07339445(1983)109:9(2129).
  28. Pham, B.T. (2019), "Optimum cost design of frames using genetic algorithms", Steel Compos. Struct., 30(3), 293-304. https://doi.org/10.12989/scs.2019.30.3.293.
  29. Planinc, I. and Saje, M. (1999), "A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix", Comput. Method. Appl. M., 169(1), 89-105. https://doi.org/10.1016/S0045-7825(98)00178-9.
  30. Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Elem. Anal. Struct. Mech., 63-89. https://doi.org/10.1007/978-3-642-81589-8_5.
  31. Rao, S.S. (2009), Engineering optimization: theory and practice. Hoboken, New Jersey, John Wiley & Sons.
  32. Rehlicki, L.Z., Janev, M.B., Novakovic, B.N. and Atanackovic, T.M. (2018), "On post-critical behavior of a beam on an elastic foundation", Int. J. Struct. Stab. Dynam., 18(6), 1850082. https://doi.org/10.1142/s0219455418500827.
  33. Rezaiee-Pajand, M. and Naserian, R. (2018), "Geometrical nonlinear analysis based on optimization technique", Appl. Math. Model., 53, 32-48. https://doi.org/10.1016/j.apm.2017.08.003.
  34. Riks, E. (1972), "The application of Newton's method to the problem of elastic stability", J. Appl. Mech., 39(4), 1060-1065. https://doi.org/10.1115/1.3422829.
  35. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7.
  36. Rosen, A. and Schmit, L.A. (1979), "Design-oriented analysis of imperfect truss structures-part I-accurate analysis", Int. J. Numer. Meth. Eng., 14(9), 1309-1321. https://doi.org/10.1002/nme.1620140905.
  37. Saffari, H., Mansouri, I., Bagheripour, M.H. and Dehghani, H. (2012), "Elasto-plastic analysis of steel plane frames using homotopy perturbation method", J. Constr. Steel Res., 70, 350-357. http://dx.doi.org/10.1016/j.jcsr.2011.10.013.
  38. Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear fe analysis", Comput. Method. Appl. M., 59(3), 261-279. https://doi.org/10.1016/0045-7825(86)90001-0.
  39. Shayanfar, J. and Bengar, H.A. (2018), "A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints", Steel Compos. Struct., 27(1), 49-74. https://doi.org/10.12989/scs.2018.27.1.049.
  40. Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994. http://dx.doi.org/10.1016/j.jcsr.2009.06.012.
  41. Thompson, J.M.T. and Hunt, G.W. (1973), A general theory of elastic stability, John Wiley & Sons.
  42. Torkamani, M.A. and Shieh, J.H. (2011). "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526. https://doi.org/10.1016/j.engstruct.2011.07.015.
  43. Torkamani, M.A. and Sonmez, M. (2008), "Solution techniques for nonlinear equilibrium equations", Proceedings of the 18th Analysis and Computation Specialty Conference (ASCE), https://doi.org/10.1061/41000(315)35.
  44. Valipour, A., Yadollahi, M., Rosli Mohamad, Z., Nordin, Y. and Norhazilan Md, N. (2013), "An enhanced multi-objective optimization approach for risk allocation in public-private partnership projects: a case study of Malaysia", Can. J. Civil Eng., 41(2), 164-177. https://doi.org/10.1139/cjce-2013-0342.
  45. Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571.
  46. Wempner, G.A. (1971). "Discrete approximations related to nonlinear theories of solids", Int. J. Solid. Struct., 7(11), 1581-1599. https://doi.org/10.1016/0020-7683(71)90038-2.
  47. Yadollahi, M. and Zin, R.M. (2014), "Multi-strategy budget allocation decision support system for seismic rehabilitation of road infrastructure", Struct. Infrastruct. Eng., 10(2), 239-260. https://doi.org/10.1080/15732479.2012.737810.
  48. Yang, Y.B. and Kuo, S.R. (1994), Theory and analysis of nonlinear framed structures, New York, Prentice Hall.