References
- Akbas, S.D. (2018), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
- Bathe, K.-J. (2006). Finite element procedures. United States of America, Klaus-Jurgen Bathe.
- Bellini, P. and Chulya, A. (1987), "An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations", Comput. Struct., 26(1), 99-110. https://doi.org/10.1016/0045-7949(87)90240-9.
- Bostan, M., Afshar, M.H. and Khadem, M.J.E.O. (2015), "Extension of the hybrid linear programming method to optimize simultaneously the design and operation of groundwater utilization systems", Eng. Optm., 47(4), 550-560. https://doi.org/10.1080/0305215X.2014.905553.
- Bostan, M., Akhtari, A.A., Bonakdari, H. and Jalili, F.J.W. R.M. (2019), "Optimal design for shock damper with genetic algorithm to control water hammer effects in complex water distribution systems", 33(5), 1665-1681. https://doi.org/10.1007/s11269-019-2192-9.
- Crisfield, M. (1983), "An arc-length method including line searches and accelerations", Int. J. Numer. Meth. Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902.
- Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials, New York, John Wiley & Sons.
- Damil, N. and Potier-Ferry, M. (1990), "A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures", Int. J. Eng. Sci., 28(9), 943-957. https://doi.org/10.1016/0020-7225(90)90043-I.
- Forde, B.W. and Stiemer, S.F. (1987), "Improved arc length orthogonality methods for nonlinear finite element analysis", Comput. Struct., 27(5), 625-630. https://doi.org/10.1016/0045-7949(87)90078-2.
- Geers, M.A.(1999), "Enhanced solution control for physically and geometrically non-linear problems. Part I-the subplane control approach", Int. J. Numer. Meth. Eng., 46(2), 177-204. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<177::AID-NME668>3.0.CO;2-L.
- Habibi, A. and Bidmeshki, S. (2018), "A dual approach to perform geometrically nonlinear analysis of plane truss structures", Steel Compos. Struct., 27(1), 13-25. https://doi.org/10.12989/scs.2018.27.1.013.
- Habibi, A. and Bidmeshki, S. (2019), "An optimized approach for tracing pre- and post-buckling equilibrium paths of space trusses", Int. J. Struct. Stab. Dynam., 19(4), 1950040. https://doi.org/10.1142/S0219455419500408.
- Habibi, A. and Izadpanah, M. (2017), "Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads", Comput. Concrete, 20(1), 11-22. https://doi.org/10.12989/cac.2017.20.1.011.
- Habibi, A., Izadpanah, M. and Rohani, S. (2020), "Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code", Adv. Concrete Constr., 9(1), 23. https://doi.org/10.12989/acc.2020.9.1.023.
- Habibi, A., Saffari, H. and Izadpanah, M. (2019), "Optimal lateral load pattern for pushover analysis of building structures", Steel Compos. Struct., 32(1), 67-77. https://doi.org/10.12989/scs.2019.32.1.067.
- Hamdaoui, A., Braikat, B. and Damil, N. (2016), "Solving elastoplasticity problems by the asymptotic numerical method: Influence of the parameterizations", Finite Elem. Anal. Des., 115, 33-42. http://dx.doi.org/10.1016/j.finel.2016.03.001.
- Hellweg, H.B. and Crisfield, M. (1998), "A new arc-length method for handling sharp snap-backs", Comput. Struct., 66(5), 704-709. https://doi.org/10.1016/S0045-7949(97)00077-1.
- Holland, J.H. (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press.
- Izadpanah, M. and Habibi, A. (2015), "Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames", Struct. Eng. Mech., 56(2): 169-188. https://doi.org/10.12989/sem.2015.56.2.169.
- Katoch, S., Chauhan, S.S. and Kumar, V. (2020), "A review on genetic algorithm: past, present, and future", Multimedia Tools Appl., 80, 8091-8126. https://doi.org/10.1007/s11042-020-10139-6.
- Kondoh, K. and Atluri, S. (1985), "Influence of local buckling on global instability: Simplified, large deformation, post-buckling analyses of plane trusses", Comput. Struct., 21(4), 613-627. https://doi.org/10.1016/0045-7949(85)90140-3.
- Liang, K., Ruess, M. and Abdalla, M. (2016), "Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses", Finite Elem. Anal. Des., 116, 38-54. https://doi.org/10.1016/j.finel.2016.03.006.
- Mahdavi, S.H., Razak, H.A., Shojaee, S. and Mahdavi, M.S. (2015), "A comparative study on application of Chebyshev and spline methods for geometrically non-linear analysis of truss structures", Int. J. Mech. Sci., 101, 241-251. https://doi.org/10.1016/j.ijmecsci.2015.08.001.
- Mansouri, I. and Saffari, H. (2012), "An efficient nonlinear analysis of 2D frames using a Newton-like technique", Arch. Civil Mech. Eng., 12(4), 485-492. http://dx.doi.org/10.1016/j.acme.2012.07.003.
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/scs.2017.25.4.485.
- Oveisi, A., Nestorovic, T. and Nguyen, N.L. (2017), "Semi-analytical modeling and vibration control of a geometrically nonlinear plate", Int. J. Struct. Stab. Dynam., 17(4), 1771003. https://doi.org/10.1142/S0219455417710031.
- Papadrakakis, M. (1983), "Inelastic post-buckling analysis of trusses", J. Struct. Eng., 109(9), 2129-2147. https://doi.org/10.1061/(ASCE)07339445(1983)109:9(2129).
- Pham, B.T. (2019), "Optimum cost design of frames using genetic algorithms", Steel Compos. Struct., 30(3), 293-304. https://doi.org/10.12989/scs.2019.30.3.293.
- Planinc, I. and Saje, M. (1999), "A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix", Comput. Method. Appl. M., 169(1), 89-105. https://doi.org/10.1016/S0045-7825(98)00178-9.
- Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Elem. Anal. Struct. Mech., 63-89. https://doi.org/10.1007/978-3-642-81589-8_5.
- Rao, S.S. (2009), Engineering optimization: theory and practice. Hoboken, New Jersey, John Wiley & Sons.
- Rehlicki, L.Z., Janev, M.B., Novakovic, B.N. and Atanackovic, T.M. (2018), "On post-critical behavior of a beam on an elastic foundation", Int. J. Struct. Stab. Dynam., 18(6), 1850082. https://doi.org/10.1142/s0219455418500827.
- Rezaiee-Pajand, M. and Naserian, R. (2018), "Geometrical nonlinear analysis based on optimization technique", Appl. Math. Model., 53, 32-48. https://doi.org/10.1016/j.apm.2017.08.003.
- Riks, E. (1972), "The application of Newton's method to the problem of elastic stability", J. Appl. Mech., 39(4), 1060-1065. https://doi.org/10.1115/1.3422829.
- Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7.
- Rosen, A. and Schmit, L.A. (1979), "Design-oriented analysis of imperfect truss structures-part I-accurate analysis", Int. J. Numer. Meth. Eng., 14(9), 1309-1321. https://doi.org/10.1002/nme.1620140905.
- Saffari, H., Mansouri, I., Bagheripour, M.H. and Dehghani, H. (2012), "Elasto-plastic analysis of steel plane frames using homotopy perturbation method", J. Constr. Steel Res., 70, 350-357. http://dx.doi.org/10.1016/j.jcsr.2011.10.013.
- Schweizerhof, K.H. and Wriggers, P. (1986), "Consistent linearization for path following methods in nonlinear fe analysis", Comput. Method. Appl. M., 59(3), 261-279. https://doi.org/10.1016/0045-7825(86)90001-0.
- Shayanfar, J. and Bengar, H.A. (2018), "A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints", Steel Compos. Struct., 27(1), 49-74. https://doi.org/10.12989/scs.2018.27.1.049.
- Thai, H.T. and Kim, S.E. (2009), "Large deflection inelastic analysis of space trusses using generalized displacement control method", J. Constr. Steel Res., 65(10-11), 1987-1994. http://dx.doi.org/10.1016/j.jcsr.2009.06.012.
- Thompson, J.M.T. and Hunt, G.W. (1973), A general theory of elastic stability, John Wiley & Sons.
- Torkamani, M.A. and Shieh, J.H. (2011). "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526. https://doi.org/10.1016/j.engstruct.2011.07.015.
- Torkamani, M.A. and Sonmez, M. (2008), "Solution techniques for nonlinear equilibrium equations", Proceedings of the 18th Analysis and Computation Specialty Conference (ASCE), https://doi.org/10.1061/41000(315)35.
- Valipour, A., Yadollahi, M., Rosli Mohamad, Z., Nordin, Y. and Norhazilan Md, N. (2013), "An enhanced multi-objective optimization approach for risk allocation in public-private partnership projects: a case study of Malaysia", Can. J. Civil Eng., 41(2), 164-177. https://doi.org/10.1139/cjce-2013-0342.
- Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571.
- Wempner, G.A. (1971). "Discrete approximations related to nonlinear theories of solids", Int. J. Solid. Struct., 7(11), 1581-1599. https://doi.org/10.1016/0020-7683(71)90038-2.
- Yadollahi, M. and Zin, R.M. (2014), "Multi-strategy budget allocation decision support system for seismic rehabilitation of road infrastructure", Struct. Infrastruct. Eng., 10(2), 239-260. https://doi.org/10.1080/15732479.2012.737810.
- Yang, Y.B. and Kuo, S.R. (1994), Theory and analysis of nonlinear framed structures, New York, Prentice Hall.