참고문헌
- T. Bag and S.K. Samanta, Fixed point theorems in Felbin's type fuzzy normed linear spaces, J. Fuzzy Math. 16(1) (2008), 243-260.
- S. Banach, Th'eorie des Operations Lineaires, Warszawa, (1932).
- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1) (1968), 182-190. https://doi.org/10.1016/0022-247x(68)90057-7
- S.C. Cheng and J.N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, First International Conference on Fuzzy Theory and Technology Proceedings, Abstracts and Summaries, (1992), 193-197.
- N.R. Das and P. Das, Fuzzy topology generated by fuzzy norm, Fuzzy Sets and Systems, 107 (1999), 349-354. https://doi.org/10.1016/S0165-0114(97)00302-3
- D. Dean and R.A. Raimi, Permutations with comparable sets of invariant means, Duke Math. 27 (1960), 467-479.
-
E. Dundar and O. Talo,
$\mathcal{I}$ -convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst. 10(3) (2013), 37-50. - P. Diamond and P. Kloeden, Metric spaces of fuzzy sets-theory and aplications, World Scientific, Singapore, (1994).
- J.-X. Fang, A note on the completions of fuzzy metric spaces and fuzzy normed space, Fuzzy Sets and Systems, 131 (2002), 399-407. https://doi.org/10.1016/S0165-0114(02)00054-4
- J.-X. Fang and H.Huang, On the level convergence of a sequence of fuzzy numbers, Fuzzy Sets and Systems, 147 (2004), 417-435.
- C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), 293-248. https://doi.org/10.1016/0165-0114(92)90338-5
- A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Sytems, 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- R. Goetschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43. https://doi.org/10.1016/0165-0114(86)90026-6
- M. Itoh and M. Cho, Fuzzy bounded operators, Fuzzy Sets and Systems, 93 (1998), 353-362. https://doi.org/10.1016/S0165-0114(96)00198-4
- O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Sytems, 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
- A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12,, (1984), 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
- I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11(5) (1975), 336-344.
- G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. https://doi.org/10.1007/BF02393648
- J. Michalek, Fuzzy topologies, Kybernetika, 11 (1975), 345-354.
- H.I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar. 93(1-2) (2001), 135-151. https://doi.org/10.1023/A:1013877718406
- M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700-1704. https://doi.org/10.1016/j.aml.2009.06.005
- M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34 (1983), 77-86. https://doi.org/10.1093/qmath/34.1.77
- M. Mursaleen, Matrix transformations between some new sequence spaces, Houston J. Math. 9 (1983), 505-509.
- R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94. https://doi.org/10.1215/S0012-7094-63-03009-6
- E. Savas, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1-8.
- E. Savas, Strong σ-convergent sequences, Bull. Calcutta Math. 81 (1989), 295-300.
- P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110. https://doi.org/10.1090/S0002-9939-1972-0306763-0
- C. Sencimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets and Systems, 159 (2008), 361-370. https://doi.org/10.1016/j.fss.2007.06.008
- J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear space, Fuzzy Sets and Systems, 125 (2002), 153-161. https://doi.org/10.1016/S0165-0114(00)00136-6
- L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X