DOI QR코드

DOI QR Code

Application of graphene, graphene oxide, and boron nitride nanosheets in the water treatment

  • Azamat, Jafar (Department of Basic Sciences, Farhangian University)
  • 투고 : 2021.01.23
  • 심사 : 2021.06.24
  • 발행 : 2021.09.25

초록

In this research, we study recent advances in the use of graphene, graphene oxide, and boron nitride nanosheets for the water treatment processes. The perfect nanostructured membranes are impermeable to ions or molecules. Therefore, for using them in the selective separation processes, they should be drilled and so, the created pores will be functionalized using appropriate chemical functional groups. Up to now, numerous research articles have been done on the use of functionalized chemical groups on the nanostructured membranes but the results of those works have not been compared with each other. Therefore, a comprehensive review of the structural property and application of functional groups at the edge of membranes pores was performed. To the best of our knowledge, no review study has been reported in the literature on the effect of functionalized groups on the separation of molecules or ions by nanostructured membranes. This review paper aims to draw the attention of the theoretical as well as the experimental researchers working on the functionalized materials towards the recent developments probing the permeation of various species such as atoms, ions, and small molecules through graphene, graphene oxide, and boron nitride nanosheets.

키워드

참고문헌

  1. An, D., Yang, L., Wang, T.J., Liu, B. (2016), "Separation performance of graphene oxide membrane in aqueous solution", Ind. Eng. Chem. Res., 55(17), 4803-4810. http://doi.org/10.1021/acs.iecr.6b00620.
  2. Azamat, J. (2016), "Functionalized graphene nanosheet as a membrane for water desalination using applied electric fields: Insights from molecular dynamics simulations", J. Phys. Chem. C, 120(41), 23883-23891. http://doi.org/10.1021/acs.jpcc.6b08481.
  3. Azamat, J. (2017), "Removal of nickel (II) from aqueous solution by graphene and boron nitride nanosheets", J. Water Environ. Nanotechnol., 2(1), 26-33. http://doi.org/10.7508/JWENT.2017.01.004.
  4. Azamat, J., Balaei, A. and Gerami, M. (2016a), "A theoretical study of nanostructure membranes for separating Li+ and Mg2+ from Cl-", Comput. Mater. Sci, 113, 66-74. http://doi.org/https://doi.org/10.1016/j.commatsci.2015.11.029.
  5. Azamat, J., Ghasemi, F., Jahanbin Sardroodi, J. and Jahanshahi, D. (2021a), "Molecular dynamics simulation of separation of water/methanol and water/ethanol mixture using boron nitride nanotubes", J. Mol. Liq., 331, 115774. http://doi.org/https://doi.org/10.1016/j.molliq.2021.115774.
  6. Azamat, J. and Khataee, A. (2016), "Removal of nitrate ion from water using boron nitride nanotubes: Insights from molecular dynamics simulations", Comput. Theor. Chem., 1098, 56-62. https://doi.org/10.1016/j.comptc.2016.11.002.
  7. Azamat, J. and Khataee, A. (2017a), "Improving the performance of heavy metal separation from water using MoS2 membrane: Molecular dynamics simulation", Comput. Mater. Sci, 137, 201-207. https://doi.org/10.1016/j.commatsci.2017.05.043.
  8. Azamat, J. and Khataee, A. (2017b), "Molecular dynamics simulations of removal of cyanide from aqueous solution using boron nitride nanotubes", Comput. Mater. Sci, 128, 8-14. http://doi.org/10.1016/j.commatsci.2016.10.040.
  9. Azamat, J. and Khataee, A. (2018), "Separation of CH4/C2H6 mixture using functionalized nanoporous silicon carbide nanosheet", Energy Fuel., 32(7), 7508-7518. http://doi.org/10.1021/acs.energyfuels.8b01433.
  10. Azamat, J., Khataee, A. and Joo, S.W. (2014), "Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: A molecular dynamics simulation study", J. Mol. Graph. Model., 53, 112-117. http://doi.org/https://doi.org/10.1016/j.jmgm.2014.07.013.
  11. Azamat, J., Khataee, A. and Joo, S.W. (2015a), "Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure", Chem. Eng. Sci., 127, 285-292. https://doi.org/10.1016/j.ces.2015.01.048.
  12. Azamat, J., Khataee, A. and Joo, S.W. (2016b), "Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets", J. Mol. Model., 22(4), 82. http://doi.org/10.1007/s00894-016-2939-7.
  13. Azamat, J., Khataee, A. and Joo, S.W. (2016c), "Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study", J. Mol. Struct., 1108, 144-149. https://doi.org/10.1016/j.molstruc.2015.11.058.
  14. Azamat, J., Najafiasl, M., Sardroodi, J.J. and Hassani, A. (2016d), "Ab initio study of structure pyridinium-based ionic liquids and derivatives", Quat. Matt., 5(1), 53-57. https://doi.org/10.1166/qm.2016.1254.
  15. Azamat, J., Sardroodi, J.J., Poursoltani, L. and Jahanshahi, D. (2021b), "Functionalized boron nitride nanosheet as a membrane for removal of Pb2+ and Cd2+ ions from aqueous solution", J. Mol. Liq., 321, 114920. http://doi.org/https://doi.org/10.1016/j.molliq.2020.114920.
  16. Azamat, J., Sattary, B.S., Khataee, A. and Joo, S.W. (2015b), "Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations", J. Mol. Graph. Model., 61, 13-20. http://doi.org/https://doi.org/10.1016/j.jmgm.2015.06.012.
  17. Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M. and Shenoy, V.B. (2010), "Structural evolution during the reduction of chemically derived graphene oxide", Nat. Chem., 2(7), 581-587. https://doi.org/10.1038/nchem.686.
  18. Balapanuru, J., Manga, K.K., Fu, W., Abdelwahab, I., Zhou, G., Li, M., Lu, H. and Loh, K.P. (2019), "Desalination properties of a free-standing, partially oxidized few-layer graphene membrane", Desalination, 451, 72-80. https://doi.org/10.1016/j.desal.2018.08.005.
  19. Boretti, A., Al-Zubaidy, S., Vaclavikova, M., Al-Abri, M., Castelletto, S. and Mikhalovsky, S. (2018), "Outlook for graphene-based desalination membranes", npj Clean Water, 1(1), 1-11. http://doi.org/10.1038/s41545-018-0004-z.
  20. Brodie, B.C. (1859), "On the atomic weight of graphite", Philos. Trans. R. Soc. London, 149(1859), 249-259. https://doi.org/10.1098/rstl.1859.0013
  21. Bunch, J.S., Verbridge, S.S., Alden, J.S., Van der Zande, A.M., Parpia, J.M., Craighead, H.G. and McEuen, P.L. (2008), "Impermeable atomic membranes from graphene sheets", Nano Lett., 8(8), 2458-2462. http://doi.org/10.1021/nl801457b.
  22. Chen, C., Wang, J., Liu, D., Yang, C., Liu, Y., Ruoff, R.S. and Lei, W. (2018), "Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation", Nat. Commun., 9(1), 1902. http://doi.org/10.1038/s41467-018-04294-6.
  23. Chen, L., Shi, G., Shen, J., Peng, B., Zhang, B., Wang, Y., Bian, F., Wang, J., Li, D., Qian, Z., Xu, G., Liu, G., Zeng, J., Zhang, L., Yang, Y., Zhou, G., Wu, M., Jin, W., Li, J. and Fang, H. (2017), "Ion sieving in graphene oxide membranes via cationic control of interlayer spacing", Nature, 550(7676), 380. http://doi.org/10.1038/nature24044.
  24. Cohen-Tanugi, D. and Grossman, J.C. (2012), "Water desalination across nanoporous graphene", Nano Lett., 12(7), 3602-3608. http://doi.org/10.1021/nl3012853.
  25. Devanathan, R., Chase-Woods, D., Shin, Y. and Gotthold, D.W. (2016), "Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow", Sci. Rep., 6(1), 29484. http://doi.org/10.1038/srep29484.
  26. Dreyer, D.R., Jia, H.P. and Bielawski, C.W. (2010), "Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions", Angew. Chem., 122(38), 6965-6968. https://doi.org/10.1002/ange.201002160.
  27. Fang, C., Wu, H., Lee, S.Y., Mahajan, R.L. and Qiao, R. (2018), "The ionized graphene oxide membranes for water-ethanol separation", Carbon, 136, 262-269. http://doi.org/https://doi.org/10.1016/j.carbon.2018.04.077.
  28. Gao, H., Shi, Q., Rao, D., Zhang, Y., Su, J., Liu, Y., Wang, Y., Deng, K. and Lu, R. (2017), "Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination", J. Phys. Chem. C, 121(40), 22105-22113. http://doi.org/10.1021/acs.jpcc.7b06480.
  29. Geim, A.K. (2009), "Graphene: Status and Prospects", Science, 324(5934), 1530-1534. http://doi.org/10.1126/science.1158877.
  30. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R. and Kim, K.S. (2012), "Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications", Chem. Rev., 112(11), 6156-6214. http://doi.org/10.1021/cr3000412.
  31. Giri, A.K., Teixeira, F. and Cordeiro, M.N.D.S. (2019), "Salt separation from water using graphene oxide nanochannels: A molecular dynamics simulation study", Desalination, 460, 1-14. https://doi.org/10.1016/j.desal.2019.02.014.
  32. Girit, C .O ., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G. and Zettl, A. (2009), "Graphene at the edge: stability and dynamics", Science, 323(5922), 1705-1708. http://doi.org/10.1126/science.1166999.
  33. Hossain, M.Z., Johns, J.E., Bevan, K.H., Karmel, H.J., Liang, Y.T., Yoshimoto, S., Mukai, K., Koitaya, T., Yoshinobu, J., Kawai, M., Lear, A.M., Kesmodel, L.L., Tait, S.L. and Hersam, M.C. (2012), "Chemically homogeneous and thermally reversible oxidation of epitaxial graphene", Nat. Chem., 4(4), 305-309. https://doi.org/10.1038/nchem.1269.
  34. Hosseini, M., Azamat, J. and Erfan-Niya, H. (2018), "Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane", Appl. Surf. Sci., 427, 1000-1008. https://doi.org/10.1016/j.apsusc.2017.09.071.
  35. Hosseini, M., Azamat, J. and Erfan-Niya, H. (2019), "Water desalination through fluorine-functionalized nanoporous graphene oxide membranes", Mater. Chem. Phys., 223, 277-286. https://doi.org/10.1016/j.matchemphys.2018.10.063.
  36. Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), 1339-1339. http://doi.org/10.1021/ja01539a017.
  37. Jafarzadeh, R., Azamat, J. and Erfan-Niya, H. (2018), "Fluorinefunctionalized nanoporous graphene as an effective membrane for water desalination", Struct. Chem., 29(6), 1845-1852. https://doi.org/10.1007/s11224-018-1162-9.
  38. Jafarzadeh, R., Azamat, J., Erfan-Niya, H. and Hosseini, M. (2019), "Molecular insights into effective water desalination through functionalized nanoporous boron nitride nanosheet membranes", Appl. Surf. Sci., 471, 921-928. https://doi.org/10.1016/j.apsusc.2018.12.069.
  39. Jahanshahi, D., Vahid, B. and Azamat, J. (2018), "Computational study on the ability of functionalized graphene nanosheet for nitrate removal from water", Chem. Phys., 511, 20-26. https://doi.org/10.1016/j.chemphys.2018.05.018.
  40. Jia, W. and Wu, P. (2018), "Stable boron nitride nanocomposites based membranes for high-efficiency proton conduction", Electrochim. Acta, 273, 162-169. https://doi.org/10.1016/j.electacta.2018.04.017.
  41. Kaleekkal, N.J., Thanigaivelan, A., Rana, D. and Mohan, D. (2017), "Studies on carboxylated graphene oxide incorporated poly-etherimide mixed matrix ultrafiltration membranes", Mater. Chem. Phys., 186, 146-158. https://doi.org/10.1016/j.matchemphys.2016.10.040.
  42. Khataee, A., Alidokht, L., Hassani, A. and Karaca, S. (2013), "Response surface analysis of removal of a textile dye by a Turkish coal powder", Adv. Environ. Res., 2(4), 291-308. http://doi.org/10.12989/aer.2013.2.4.291.
  43. Khataee, A., Bayat, G. and Azamat, J. (2017), "Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane", J. Mol. Graph. Model., 71, 176-183. http://doi.org/https://doi.org/10.1016/j.jmgm.2016.11.017.
  44. Klaysom, C., Hermans, S., Gahlaut, A., Van Craenenbroeck, S., Vankelecom, I.F.J. (2013), "Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation", J. Membr. Sci., 445, 25-33. https://doi.org/10.1016/j.memsci.2013.05.037.
  45. Kommu, A., Namsani, S. and Singh, J.K. (2016), "Removal of heavy metal ions using functionalized graphene membranes: A molecular dynamics study", RSC Adv., 6(68), 63190-63199. http://doi.org/10.1039/C6RA06817K.
  46. Konatham, D., Yu, J., Ho, T.A. and Striolo, A. (2013), "Simulation insights for graphene-based water desalination membranes", Langmuir, 29(38), 11884-11897. http://doi.org/10.1021/la4018695.
  47. Kuila, T., Mishra, A.K., Khanra, P., Kim, N.H. and Lee, J.H. (2013), "Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials", Nanoscale, 5, 52-71. http://doi.org/10.1039/C2NR32703A.
  48. Lei, W., Portehault, D., Liu, D., Qin, S. and Chen, Y. (2013a), "Porous boron nitride nanosheets for effective water cleaning", Nat. Commun., 4(1), 1-7. http://doi.org/10.1038/ncomms2818.
  49. Lei, W., Zhang, H., Wu, Y., Zhang, B., Liu, D., Qin, S., Liu, Z., Liu, L., Ma, Y. and Chen, Y. (2014), "Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage", Nano Energy, 6, 219-224. http://doi.org/https://doi.org/10.1016/j.nanoen.2014.04.004.
  50. Li, Y., Xu, Z., Liu, S., Zhang, J. and Yang, X. (2017), "Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes", Comput. Mater. Sci, 139, 65-74. https://doi.org/10.1016/j.commatsci.2017.07.032.
  51. Liu, Q., Wu, Y., Wang, X., Liu, G., Zhu, Y., Tu, Y., Lu, X. and Jin, W. (2019), "Molecular dynamics simulation of water-ethanol separation through monolayer graphene oxide membranes: Significant role of O/C ratio and pore size", Sep. Purif. Technol., 224, 219-226. https://doi.org/10.1016/j.seppur.2019.05.030.
  52. Majumder, M., Chopra, N. and Hinds, B.J. (2005), "Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes", J. Am. Chem. Soc., 127(25), 9062-9070. http://doi.org/10.1021/ja043013b.
  53. Mishra, A.K. and Ramaprabhu, S. (2011), "Functionalized graphene sheets for arsenic removal and desalination of sea water", Desalination, 282, 39-45. http://doi.org/http://dx.doi.org/10.1016/j.desal.2011.01.038.
  54. Mockel, D., Staude, E., Dal-Cin, M., Darcovich, K. and Guiver, M. (1998), "Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes", J. Membr. Sci., 145(2), 211-222. https://doi.org/10.1016/S0376-7388(98)00077-5.
  55. Mortazavi, B. and Remond, Y. (2012), "Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations", Physica E, 44, 1846-1852. https://doi.org/10.1016/j.physe.2012.05.007.
  56. O'Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., Atieh, M. and Karnik, R. (2014), "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14(3), 1234-1241. http://doi.org/10.1021/nl404118f.
  57. Pei, Q.X., Zhang, Y.W. and Shenoy, V.B. (2010), "A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene", Carbon, 48(3), 898-904. https://doi.org/10.1016/j.carbon.2009.11.014.
  58. Perreault, F., Fonseca de Faria, A. and Elimelech, M. (2015), "Environmental applications of graphene-based nanomaterials", Chem. Soc. Rev., 44(16), 5861-5896. http://doi.org/10.1039/C5CS00021A.
  59. Ruan, Y., Zhu, Y., Zhang, Y., Gao, Q., Lu, X. and Lu, L. (2016), "Molecular dynamics study of Mg2+/Li+ separation via biomimetic graphene-based nanopores: The role of dehydration in second shell", Langmuir, 32(51), 13778-13786. http://doi.org/10.1021/acs.langmuir.6b03001.
  60. Saadat Tabrizi, N., Vahid, B. and Azamat, J. (2020), "Functionalized single-atom thickness boron nitride membrane for separation of arsenite ion from water: A molecular dynamics simulation study", Phys. Chem. Res., 8(3), 543-556. http://doi.org/10.22036/pcr.2020.222756.1742.
  61. Sahu, S., Di Ventra, M. and Zwolak, M. (2017), "Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores", Nano Lett., 17(8), 4719-4724. http://doi.org/10.1021/acs.nanolett.7b01399.
  62. Sardroodi, J.J., Azamat, J., Rastkar, A. and Yousefnia, N.R. (2012), "The preferential permeation of ions across carbon and boron nitride nanotubes", Chem. Phys., 403, 105-112. https://doi.org/10.1016/j.chemphys.2012.05.017.
  63. Sasidharan, A., Panchakarla, L.S., Chandran, P., Menon, D., Nair, S., Rao, C.N.R. and Koyakutty, M. (2011), "Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene", Nanoscale, 3(6), 2461-2464. http://doi.org/10.1039/C1NR10172B.
  64. Sint, K., Wang, B., Kral, P. (2008), "Selective ion passage through functionalized graphene nanopores", J. Am. Chem. Soc., 130(49), 16448-16449. http://doi.org/10.1021/ja804409f.
  65. Smith, S.C., Ahmed, F., Gutierrez, K.M. and Rodrigues, D.F. (2014), "A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications", Chem. Eng. J., 240, 147-154. https://doi.org/10.1016/j.cej.2013.11.030.
  66. Staudenmaier, L. (1898), "Verfahren zur Darstellung der Graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487. http://doi.org/10.1002/cber.18980310237.
  67. Sun, P., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Xu, Z. and Zhu, H. (2013a), "Selective ion penetration of graphene oxide membranes", ACS Nano, 7(1), 428-437. http://doi.org/10.1021/nn304471w.
  68. Sun, Q., Li, Z., Searles, D.J., Chen, Y., Lu, G. and Du, A. (2013b), "Charge-controlled switchable CO2 capture on boron nitride nanomaterials", J. Am. Chem. Soc., 135(22), 8246-8253. http://doi.org/10.1021/ja400243r.
  69. Taherian, F., Marcon, V., van der Vegt, N.F.A. and Leroy, F. (2013), "What is the contact angle of water on graphene?", Langmuir, 29(5), 1457-1465. http://doi.org/10.1021/la304645w.
  70. Tang, C.Y., Zulhairun, A.K., Wong, T.W., Alireza, S., Marzuki, M.S.A. and Ismail, A.F. (2019), "Water transport properties of boron nitride nanosheets mixed matrix membranes for humic acid removal", Heliyon, 5(1), e01142. https://doi.org/10.1016/j.heliyon.2019.e01142.
  71. Tsetseris, L. and Pantelides, S.T. (2014), "Graphene: An impermeable or selectively permeable membrane for atomic species?", Carbon, 67, 58-63. https://doi.org/10.1016/j.carbon.2013.09.055.
  72. Wang, Y., He, Z., Gupta, K.M., Shi, Q. and Lu, R. (2017), "Molecular dynamics study on water desalination through functionalized nanoporous graphene", Carbon, 116, 120-127. https://doi.org/10.1016/j.carbon.2017.01.099.
  73. Wu, J., Xie, L., Li, Y., Wang, H., Ouyang, Y., Guo, J. and Dai, H. (2011), "Controlled chlorine plasma reaction for noninvasive graphene doping", J. Am. Chem. Soc., 133(49), 19668-19671. http://doi.org/10.1021/ja2091068.
  74. Xiao, F. (2016), "Hexagonal boron nitride nanosheets synthesis and applications", Institute for Superconducting and Electronic Materials, University of Wollongong.
  75. Yin, C.G., Ma, Y., Liu, Z.J., Fan, J.C., Shi, P.H., Xu, Q.J. and Min, Y.L. (2019), "Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes", Polymer, 162, 100-107. https://doi.org/10.1016/j.polymer.2018.12.038.
  76. Yu, T., Xu, Z., Liu, S., Liu, H. and Yang, X. (2018), "Enhanced hydrophilicity and water-permeating of functionalized graphene -oxide nanopores: Molecular dynamics simulations", J. Membr. Sci., 550, 510-517. https://doi.org/10.1016/j.memsci.2017.10.060.
  77. Yuan, Y., Gao, X., Wei, Y., Wang, X., Wang, J., Zhang, Y. and Gao, C. (2017), "Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes", Desalination, 405, 29-39. https://doi.org/10.1016/j.desal.2016.11.024.
  78. Zhang, H., Huang, J.W., Velasco Jr, J., Myhro, K., Maldonado, M., Tran, D.D., Zhao, Z., Wang, F., Lee, Y., Liu, G., Bao, W. and Lau, C.N. (2014), "Transport in suspended monolayer and bilayer graphene under strain: A new platform for material studies", Carbon, 69, 336-341. http://doi.org/http://dx.doi.org/10.1016/j.carbon.2013.12.033.
  79. Zhu, Y., Ruan, Y., Zhang, Y., Chen, Y., Lu, X. and Lu, L. (2017), "Mg2+-channel-inspired nanopores for Mg2+/Li+ separation: The effect of coordination on the ionic hydration microstructures", Langmuir, 33(36), 9201-9210. http://doi.org/10.1021/acs.langmuir.7b01249.
  80. Zornoza, B., Martinez-Joaristi, A., Serra-Crespo, P., Tellez, C., Coronas, J., Gascon, J. and Kapteijn, F. (2011), "Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures", Chem. Commun., 47(33), 9522-9524. http://doi.org/10.1039/C1CC13431K.