DOI QR코드

DOI QR Code

A numerical study of a self-centring SMA damper

  • Ma, Hongwei (State Key Laboratory of Subtropical Architecture Science, South China University of Technology) ;
  • Ling, Yuhong (State Key Laboratory of Subtropical Architecture Science, South China University of Technology)
  • Received : 2019.03.28
  • Accepted : 2021.07.15
  • Published : 2021.09.10

Abstract

Many SMA-based dampers were presented and they can show both energy dissipating capability and self-centring property. This paper aims to a self-centring damper composed by two groups of pre-tensioned SMA wires and two pre-compressed springs. The three-dimensional solid finite element models of the damper are constructed at ANSYS Workbench environment, and the Auricchio's model is used to simulate the superelastic behaviour of the SMA wires. To simulate the damper assembly process, the models of two springs are compressed and certain pre-tensions are imposed to the SMA wires. The initial stresses for the core components are figured out and imposed to the un-deformed damper. Then, the cyclic loads are imposed to the damper models and the mechanical behaviour of the damper is simulated. The numerical simulation results are compared with the theoretical analysis results based on the Brinson model of the SMA material. For a 1 m long damper with a 5 mm stroke in the case study, both the numerical and theoretical results show that a 35 kN reaction force is offered by the damper. The force-displacement curves of the damper model are flag-shaped, indicating the moderated energy dissipating capacity and full self-centring capability of the damper.

Keywords

Acknowledgement

This work was partially supported by the Open Subject of the State Key Laboratory of Subtropical Building Science (2018ZB29). We are grateful to J.L. Yuan and C.Q. Pan for contributions on the FE models.

References

  1. Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plastic., 26(7), 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003.
  2. Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation", Continuum. Mech. Therm., 22(5), 345-362. https://doi.org/10.1007/s00161-010-0155-8.
  3. Asgarian, B., Salari, N. and Saadati, B. (2016), "Application of intelligent passive devices based on shape memory alloys in seismic control of structures", Struct., 5, 161-169. https://doi.org/10.1016/j.istruc.2015.10.013.
  4. Auricchio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Nonlin. Mech., 32(6), 1101-1114. https://doi.org/10.1016/j.istruc.2015.10.013.
  5. Auricchio, F., Taylor, R.L. and Lubliner, J. (1997), "Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour", Comput. Meth. Appl. M, 146(3-4), 281-312. https://doi.org/10.1016/S0045-7825(96)01232-7.
  6. Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitute model for shape memory materials .1. The monolithic shape memory alloy", Int. J. Plast., 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  7. Brinson, L.C. and Huang, M.S. (1996), "Simplifications and comparisons of shape memory alloy constitutive models", J. Intell. Mater. Syst. Struct., 7(1), 108-114. https://doi.org/10.1177/1045389X9600700112.
  8. Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AIDEQE958>3.0.CO;2-%23.
  9. Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct., 34(14), 1687-1717. https://doi.org/10.1002/eqe.501.
  10. Govindjee, S. and Kasper, E.P. (1997), "A shape memory alloy model for uranium-niobium accounting for plasticity", J. Intell. Mater. Syst. Struct., 8(10), 815-823. https://doi.org/10.1177/1045389X9700801001.
  11. Hashemi, A., Bagheri, H., Yousef-Beik, S.M.M., Darani, F.M., Valadbeigi, A., Zarnani, P. and Quenneville, P. (2020), "Enhanced seismic performance of timber structures using resilient connections: full-scale testing and design procedure", J. Struct. Eng., 146(9), 04020180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002749.
  12. Hashemi, A. and Quenneville, P. (2020), "Large-scale testing of low damage rocking Cross Laminated Timber (CLT) wall panels with friction dampers", Eng. Struct., 206, 110166. https://doi.org/10.1016/j.engstruct.2020.110166.
  13. Hashemi, A. and Quenneville, P. (2020), "Seismic performance of timber structures using rocking walls with low damage hold-down connectors", Struct., 27, 274-284. https://doi.org/10.1016/j.istruc.2020.05.050.
  14. Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behaviour of bracing damper systems by utilizing metallic yielding and recentering material devices", Adv. Mater. Sci. Eng., 2018(7),1-15. https://doi.org/10.1155/2018/2813058.
  15. Jamalpour, R., Nekooei, M. and Moghadam, A.S. (2017), "Seismic behaviour of steel column-base-connection equipped by NiTi shape memory alloy", Struct. Eng. Mech., 64(1), 109-120. http://doi.org/10.12989/sem.2017.64.1.109.
  16. Jiang, X.J. and Li, B.T. (2017), "Finite element analysis of a superelastic shape memory alloy considering the effect of plasticity", J. Theor. Appl. Mech., 55(4), 1355-1368. http://doi.org/10.15632/jtam-pl.55.4.1355.
  17. Kheyroddin, A., Gholhaki, M. and Pachideh, G. (2019), "Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the near-fault field", J. Rehab. Civil Eng., 7(1), 227-241. https://doi.org/10.22075/jrce.2018.12347.1211.
  18. Khodaei, H. and Terriault, P. (2018), "Experimental validation of shape memory material model implemented in commercial finite element software under multiaxial loading", J. Intell. Mater. Syst. Struct., 29(14), 2954-2965. https://doi.org/10.1177/1045389X18781047.
  19. Li, H.N., Huang, Z., Fu, X. and Li, G. (2018), "A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures", Struct. Control Hlth., 25(9), e2233. https://doi.org/10.1002/stc.2233.
  20. Li, H., Mao, C.X. and Ou, J.P. (2008), "Experimental and theoretical study on two types of shape memory alloy devices", Earthq. Eng. Struct., 37(3), 407-426. https://doi.org/10.1002/eqe.761.
  21. Liang, C. and Rogers, C.A. (1992), "A multidimensional constitutive model for shape memory alloys", J. Eng. Math., 26(3), 429-443. https://doi.org/10.1007/BF00042744.
  22. Ma, H. and Cho, C. (2008), "Feasibility study on a superelastic SMA damper with re-centring capability", Mater. Sci. Eng. A-Struct., 473(1-2), 290-296. https://doi.org/10.1016/j.msea.2007.04.073.
  23. Ma, H. and Yam, M.C.H. (2011), "Modelling of a self-centring damper and its application in structural control", J. Constr. Steel Res., 67(4), 656-666. https://doi.org/10.1016/j.jcsr.2010.11.014.
  24. Martowicz, A., Bryla, J., Staszewski, W.J., Ruzzene, M. and Uhl, T. (2019), "Nonlocal elasticity in shape memory alloys modeled using peridynamics for solving dynamic problems", Nonlin. Dyn., 97(3), 1911-1935. https://doi.org/10.1007/s11071-019-04943-5.
  25. Motahari, S.A., Ghassemieh, M. and Abolmaali, S.A. (2007), "Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations", J. Constr. Steel Res., 63(12), 1570-1579. https://doi.org/10.1016/j.jcsr.2007.02.001.
  26. Pachideh, G., Gholhaki, M. and Kafi, M. (2020), "Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper", Steel Compos. Struct., 36(2), 197-211. http://doi.org/10.12989/scs.2020.36.2.197.
  27. Pachideh, G., Kafi, M. and Gholhaki, M. (2020), "Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater", Struct., 28, 467-481. https://doi.org/10.1016/j.istruc.2020.09.007.
  28. Panico, M. and Brinson, L.C. (2008), "Computational modeling of porous shape memory alloys", Int. J. Solid. Struct., 45(21), 5613-5626. https://doi.org/10.1016/j.ijsolstr.2008.06.005.
  29. Qidwai, M.A. and Lagoudas, D.C. (2000), "Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms", Int. J. Numer. Meth. Eng., 47(6), 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N.
  30. Reese, S. and Christ, D. (2008), "Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation", Int. J. Plast., 24(3), 455-482. https://doi.org/10.1016/j.ijplas.2007.05.005.
  31. Shinde, D., Katariya, P.V., Mehar, K., Khan, M.R., Panda, S.K. and Pandey, H.K. (2018), "Experimental training of shape memory alloy fibres under combined thermomechanical loading", Struct. Eng. Mech., 68(5), 519-526. http://doi.org/10.12989/sem.2018.68.5.519.
  32. Souza, A.C., Mamiya, E.N. and Zouain, N. (1998), "Three-dimensional model for solids undergoing stress-induced phase transformations", Eur. J. Mech A-Solid., 17(5), 789-806. https://doi.org/10.1016/S0997-7538(98)80005-3.
  33. Speicher, M., Hodgson, D.E., DesRoches, R. and Leon, R.T. (2009), "Shape memory alloy tension/compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-753. https://doi.org/10.1007/s11665-009-9433-7.
  34. Tanaka, K., Kobayashi, S. and Sato, Y. (1986), "Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys", Int. J. Plast., 2(1), 59-72. https://doi.org/10.1016/0749-6419(86)90016-1.
  35. van de Lindt, J.W. and Potts, A. (2008), "Shake table testing of a superelastic shape memory alloy response modification device in a wood shearwall", J. Struct. Eng., ASCE, 134(8), 1343-1352. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1343).
  36. Wang, B., Zhu, S.Y., Casciati, F., Chen, K.X. and Jiang, H.J. (2021), "Cyclic behaviour and deformation mechanism of superelastic SMA U-shaped dampers under in-plane and out-of-plane loadings", Smart Mater. Struct., 30(5), 055009. https://doi.org/10.1088/1361-665X/abedf4
  37. Yang, C.S.W., DesRoches, R. and Leon, R.T. (2010), "Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices", Eng. Struct., 32(2), 498-507. https://doi.org/10.1016/j.engstruct.2009.10.011.
  38. Yavari, A., Mirzaeifar, R. and DesRoches, R. (2010), "Exact solutions for pure torsion of shape memory alloy circular bars", Mech. Mater., 42(8), 797-806. https://doi.org/10.1016/j.mechmat.2010.06.003.
  39. Yavari, A., Mirzaeifar, R. and DesRoches, R. (2011), "A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs", Int. J. Solid. Struct., 48(3-4), 611-624. https://doi.org/10.1016/j.ijsolstr.2010.10.026.
  40. Zhang, Y.F. and Zhu, S.Y. (2008), "Seismic response control of building structures with superelastic shape memory alloy wire dampers", J. Eng. Mech., ASCE, 134(3), 240-251. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:3(240).
  41. Zhu, S. and Zhang, Y. (2007), "Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct., 36(10), 1329-1346. https://doi.org/10.1002/eqe.683.
  42. Zuo, X.B., Li, A.Q. and Chen, Q.F. (2008), "Design and analysis of a superelastic SMA damper", J. Intell. Mater. Syst. Struct., 19(6), 631-639. https://doi.org/10.1177/1045389X07078085.