과제정보
This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 52078134 and 51678148), the Natural Science Foundation of Jiangsu Province (BK20181277), the National Key R&D Program of China (No. 2017YFC0806009), and the Scientific Research Foundation of Graduate School of Southeast University (YBPY2129), which are gratefully acknowledged. Wen-ming Zhang, Zhi-wei Wang, and Dandian Feng contributed equally to this work and should be considered co-first authors.
참고문헌
- Casas, J.R. (1994), "A combined method for measuring cable forces: The cable-stayed Alamillo Bridge, Spain", Struct. Eng. Int., 4(4), 235-240. https://doi.org/10.2749/101686694780601700.
- Chen, C.C., Wu, W.H., Chen, S.Y. and Lai, G. (2018), "A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions", Eng. Struct., 166, 152-166. https://doi.org/10.1016/j.engstruct.2018.03.070.
- Chen, C.C., Wu, W.H., Huang, C.H. and Lai, G. (2013), "Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements", Smart. Struct. Syst., 11(4), 411-433. https://doi.org/10.12989/sss.2013.11.4.411.
- Chen, C.C., Wu, W.H., Leu, M.R. and Lai, G. (2016), "Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements", Measure., 86, 182-195. https://doi.org/10.1016/j.measurement.2016.02.053.
- Clerc, M. (1999), "The swarm and the queen: towards a deterministic and adaptive particle swarm optimization", Proceedings of the 1999 Congress on Evolutionary Computation (CEC99), Washington, USA, July.
- Clerc, M. and Kennedy, J. (2002), "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE Tran. Evol. Comput., 6(1), 58-73. https://doi.org/10.1109/4235.985692.
- Dan, D., Chen, Y. and Xu, B. (2015), "A PSO driven intelligent model updating and parameter identification scheme for cable-damper system", Shock Vib., 2015, 423898. https://doi.org/10.1155/2015/423898.
- Dan, D., Xu, B., Xia, Y., Yan, X. and Jia, P. (2018b), "Intelligent parameter identification for bridge cables based on characteristic frequency equation of transverse dynamic stiffness", J. Low Freq. Noise Vib. Act. Control, 39(3), 678-689. https://doi.org/10.1177/1461348418814617.
- Dan, D.H., Xia, Y., Xu, B., Han, F. and Yan, X.F. (2018a), "Multistep and multiparameter identification method for bridge cable systems", J. Bridge Eng., 23(1), 04017111. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001145.
- Eberhart, R.C. and Shi, Y. (2000), "Comparing inertia weights and constriction factors in particle swarm optimization", Proceedings of the 2000 Congress on Evolutionary Computation (CEC00), La Jolla, USA, July.
- Fang, Z. and Wang, J.Q. (2012), "Practical formula for cable tension estimation by vibration method", J. Bridge Eng., 17(1), 161-164. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200.
- Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, Mass, USA.
- Jeong, S., Kim, H., Lee, J. and Sim, S.H. (2020), "Automated wireless monitoring system for cable tension forces using deep learning", Struct. Hlth. Monit., 20(4), 1805-1821. https://doi.org/10.1177/1475921720935837.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, November.
- Kim, B.H. and Park, T. (2007), "Estimation of cable tension force using the frequency-based system identification method", J. Sound Vib., 304(3-5), 660-676. https://doi.org/10.1016/j.jsv.2007.03.012.
- Kim, S.W., Cheung, J.H., Park, J.B. and Na, S.O. (2020), "Image-based back analysis for tension estimation of suspension bridge hanger cables", Struct. Control. Hlth. Monit., 27(4), e2508. https://doi.org/10.1002/stc.2508.
- Li, H., Zhang, F. and Jin, Y. (2014), "Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration", Struct. Control. Hlth. Monit., 21(7), 1100-1117. https://doi.org/10.1002/stc.1634.
- Liao, W.Y., Ni, Y.Q. and Zheng, G. (2012), "Tension force and structural parameter identification of bridge cables", Adv. Struct. Eng., 15(6), 983-995. https://doi.org/10.1260/1369-4332.15.6.983.
- Ma, L. (2017), "A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions", J. Sound Vib., 409, 65-80. https://doi.org/10.1016/j.jsv.2017.07.043.
- Ma, L., Xu, H., Munkhbaatar, T. and Li, S.F. (2021), "An accurate frequency-based method for identifying cable tension while considering environmental temperature variation", J. Sound Vib., 490, 115693. https://doi.org/10.1016/j.jsv.2020.115693.
- Mebrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313).
- Ni, Y.Q., Ko, J.M. and Zheng, G. (2002), "Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity", J. Sound. Vib., 257(2), 301-319. https://doi.org/10.1006/jsvi.2002.5060.
- Rango, B.J., Serralunga, F.J., Piovan, M.T., Ballaben, J.S. and Rosales, M.B. (2019), "Identification of the tension force in cables with insulators", Meccanica, 54(1-2), 33-46. https://doi.org/10.1007/s11012-018-00941-w.
- Ren, W.X., Chen, G. and Hu, W.H. (2005), "Empirical formulas to estimate cable tension by cable fundamental frequency", Struct. Eng. Mech., 20(3), 363-380. https://doi.org/10.12989/sem.2005.20.3.363.
- Ricciardi, G. and Saitta, F. (2008), "A continuous vibration analysis model for cables with sag and bending stiffness", Eng. Struct., 30(5), 1459-1472. https://doi.org/10.1016/j.engstruct.2007.08.008.
- Robinson, J. and Rahmat-Samii,Y. (2004), "Particle swarm optimization in electromagnetics", IEEE Tran. Antennas Propag., 52(2), 397-407. https://doi.org/10.1109/TAP.2004.823969.
- Russell, J.C. and Lardner, T.J. (1998), "Experimental determination of frequencies and tension for elastic cables", J. Eng. Mech., 124(10), 1067-1072. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1067).
- Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, USA, May.
- Triantafyllou, M.S. (1984), "The dynamics of taut inclined cables", Q. J. Mech. Appl. Math., 37(3), 421-440. https://doi.org/10.1093/qjmam/37.3.421.
- Triantafyllou, M.S. and Grinfogel, L. (1986), "Natural frequencies and modes of inclined cables", J. Struct. Eng., 112(1), 139-148. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:1(139).
- Van den Bergh, F. and Engelbrecht, A.P. (2006), "A study of particle swarm optimization particle trajectories", Inf. Sci., 176(8), 937-971. https://doi.org/10.1016/j.ins.2005.02.003.
- Xie, X. and Li, X. (2014), "Genetic algorithm-based tension identification of hanger by solving inverse eigenvalue problem", Inverse Prob. Sci. Eng., 22(6), 966-987. https://doi.org/10.1080/17415977.2013.848432.
- Xu, B., Dan, D. and Zou, Y. (2019), "Accurate identification method and practical formula of suspender tension based on tri-segment suspender dynamic model", Eng. Struct., 200, 109710. https://doi.org/10.1016/j.engstruct.2019.109710.
- Yan, B., Chen, W., Yu, J. and Jiang, X. (2019), "Mode shape-aided tension force estimation of cable with arbitrary boundary conditions", J. Sound Vib., 440, 315-331. https://doi.org/10.1016/j.jsv.2018.10.018.
- Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R., Hunt, V., Helmicki, A. and Venkatesh, C. (2018), "Vibration-based cable condition assessment: A novel application of neural networks", Eng. Struct., 177, 291-305. https://doi.org/10.1016/j.engstruct.2018.09.060.
- Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R.J., Hunt, V.J. and Helmicki, A. (2017), "Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization", J. Bridge Eng., 22(10), 05017008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001130.
- Zui, H., Shinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng., 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651).