DOI QR코드

DOI QR Code

Study of structural-thermal characteristics of electrified conductors under aeolian vibration

  • Zhang, Meng (School of Civil Engineering, Zhengzhou University) ;
  • Zhou, Jian (School of Civil Engineering, Zhengzhou University) ;
  • Zhao, Guifeng (School of Civil Engineering, Zhengzhou University) ;
  • Xu, Jiankun (School of Civil Engineering, Zhengzhou University) ;
  • Sun, Chao (Department of Civil and Environmental Engineering, Louisiana State University)
  • 투고 : 2021.06.11
  • 심사 : 2021.08.11
  • 발행 : 2021.08.25

초록

High-voltage transmission lines are featured by electrical and structural properties. Current studies on aeolian vibration of transmission lines focus primarily on structural responses of unenergized conductors. However, moderate aeolian vibration can also enhance the convection heat transfer capability of a transmission line, which improves the steady current-carrying capacity. In this paper, a fluid-structure interaction (FSI) model is established to study the structural thermal characteristics of overhead electrified aluminum conductor steel-reinforced cable (ACSR) conductors. Moreover, the fatigue damage of the energized conductor is analyzed under operational conditions. Results show that there is considerable influence from aeolian vibration on the current-carrying capacity of energized conductors. Compared with the nonelectrical conductors, aeolian vibration can enhance the convective heat transfer effect of energized conductors. Additionally, fatigue life of electrified transmission lines is larger than that of nonelectrical conductors under aeolian vibration. The developed structure-fluid-thermal model can be used to aid design and operation optimization of transmission lines.

키워드

과제정보

This work was funded by the National Natural Science Foundation of China (grant nos. 51578512 and 51108425) and the China Scholarship Council.

참고문헌

  1. Aggarwal, R.K., Johns, A.T., Jayasinghe, J.A.S.B. and Su, W. (2000), "An overview of the condition monitoring of overhead lines", Electric Power Syst. Res., 53(1), 15-22. https://doi.org/10.1016/S0378-7796(99)00037-1.
  2. Azevedo, C.R.F. and Cescon, T. (2002), "Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana' River", Eng. Fail. Anal., 9, 645-664. https://doi.org/10.1016/S1350-6307(02)00021-3.
  3. Azevedo, C.R.F., Henriques, A.M.D., Pulino Filho, A.R., Ferreira, J.L.A. and Araujo, J.A. (2009), "Fretting fatigue in overhead conductors: Rig design and failure analysis of a Grosbeak aluminium cable steel reinforced conductor", Eng. Fail. Anal., 16(1), 136-151. https://doi.org/10.1016/j.engfailanal.2008.01.003.
  4. Barry, O., Long, R. and Oguamanam, D. (2017), "Simplified vibration model and analysis of a single-conductor transmission line with dampers", J. Mech. Eng. Sci., 231(22), 4150-4162. https://doi.org/10.1177/0954406216660736.
  5. Cagney, N. and Balabani, S. (2013), "Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations", J. Fluids Struct., 38, 127-145. https://doi.org/10.1016/j.jfluidstructs.2012.12.004.
  6. Chen, G., Wang, X., Wang, J., Liu, J., Zhang, T. and Tang, W. (2012), "Damage investigation of the aged aluminium cable steel reinforced (ACSR) conductors in a high-voltage transmission line", Eng. Fail. Anal., 19, 13-21. https://doi.org/10.1016/j.engfailanal.2011.09.002.
  7. Churchill, S.W. and Bernstein, M. (1977), "A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow", J. Heat Transfer, 99(2), 300-306. https://doi.org/10.1115/1.3450685.
  8. CIGRE WG12 (1992), Thermal Behavior of Overhead Conductors, ELECTRA.
  9. Claren R. and Diana G. (1969), "Mathematical analysis of transmission line vibration", IEEE Transactions Power Apparatus Syst., 88(12), 1741-1771. https://doi.org/10.1109/TPAS.1969.292291.
  10. Diana, G., Bruni, S., Cheli, F., Fossati, F. and Manenti, A. (1998), "Dynamic analysis of the transmission line crossing 'Lago de Maracaibo", J. Wind Eng. Ind. Aerod., 74, 977-986. https://doi.org/10.1016/S0167-6105(98)00089-0.
  11. Du, Y., Peng, J., Richard Liew, J.Y. and Li, G. (2018), "Mechanical properties of high tensile steel cables at elevated temperatures", Construct. Build. Mater., 182, 52-65. https://doi.org/10.1016/j.conbuildmat.2018.06.012.
  12. EPRI (2006), Transmission Line Reference Book: Wind-Induced Conductor Motion, Elect. Power Res. Inst.: Palo Alto, CA, U.S.A.
  13. Fadel, A.A., Rosa, D., Murca, L.B., Fereira, J.L. A. and Araujo, J. A. (2012), "Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor", Int. J. Fatigue, 42, 24-34. https://doi.org/10.1016/j.ijfatigue.2011.03.007.
  14. Ferguson, J.M. and Gibbon, R.R. (1994), "Overhead transmission lines-refurbishment and developments", Power Eng. J., 8(3), 109-118. https://doi.org/10.1049/pe:19940303.
  15. Foti, F. and Martinelli, L. (2018a), "A unified analytical model for the self-damping of stranded cables under aeolian vibrations", J. Wind Eng. Ind. Aerod., 176, 225-238. https://doi.org/10.1016/j.jweia.2018.03.028.
  16. Foti, F. and Martinelli, L. (2018b), "An enhanced unified model for the self-damping of stranded cables under aeolian vibrations", J. Wind Eng. Ind. Aerod., 182, 72-86. https://doi.org/10.1016/j.jweia.2018.09.005.
  17. Fricke, W. and Rawlins, C. (1968), "Importance of fretting in vibration failures of stranded conductors", IEEE Transactions Power Apparatus Syst., 87(6), 1381-1384. https://doi.org/10.1109/TPAS.1968.292104.
  18. GB/T 1179-2008 (2008), Round Wire Concentric Lay Overhead Electrical Stranded Conductors, National Standard of the People's Republic of China; Beijing, China.
  19. Hard A.R. and, Holben R.D. (1967), "Application of the vibration decay test to transmission line conductors", IEEE Transactions Power Apparatus Syst., 86(2), 189-199. https://doi.org/10.1109/TPAS.1967.291835.
  20. IEEE (2007), Guide for Aeolian Vibration Field Measurements of Overhead Conductors, The institute of Electrical and Electronics Engineers Inc., New York.
  21. IEEE (2013), IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors, The institute of Electrical and Electronics Engineers Inc., New York.
  22. Judge, R., Yang, Z., Jones, S.W. and Beattie, G. (2012), "Full 3D finite element modelling of spiral strand cables", Construct. Build. Mater., 35, 452-459. https://doi.org/10.1016/j.conbuildmat.2011.12.073.
  23. Kalombo, R.B., Martinez, J.M.G., Ferreira, J.L.A., da Silva, C.R.M. and Araujo, J.A. (2015), "Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis", Procedia Engineering, 133, 223-232. https://doi.org/10.1016/j.proeng.2015.12.662.
  24. Kalombo, R.B., Pestana, M.S., Freire Junior, R.C.S., Ferreira, J.L.A., Silva, C.R.M., Veloso, L.A.C.M., Camara, E.C.B. and Araujo, J.A. (2020), "Fatigue life estimation of an all aluminium alloy 1055 MCM conductor for different mean stresses using an artificial neural network", Int. J. Fatigue, 140, 0142-1123. https://doi.org/10.1016/j.ijfatigue.2020.105814.
  25. Karabay, S., Erturk, A.T., Zeren, M., Yamanoglu, R. and Karakulak, E. (2018), "Failure analysis of wire-breaks in aluminum conductor production and investigation of early failure reasons for transmission lines", Eng. Fail. Anal., 83, 47-56. https://doi.org/10.1016/j.engfailanal.2017.09.007.
  26. Kim, C. (2017), "Design sensitivity analysis of a Stockbridge damper to control resonant frequencies", J. Mech. Sci. Technol., 31(9), 4145-4150. https://doi.org/10.1007/s12206-017-0810-0.
  27. Knudsen, J.G. and Katz D.L. (1958), "Fluid dynamics and heat transfer", Chem. Eng. Ser., McGraw-Hill, New York.
  28. Lalonde, S., Guilbault, R. and Langlois, S. (2017b), "Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts-Part II: Application to wind-induced vibration and fatigue analysis of overhead conductors", Int. J. Mech. Sci., 126, 297-307. https://doi.org/10.1016/j.ijmecsci.2016.12.015.
  29. Lalonde, S., Guilbault, R. and Legeron, F. (2017a), "Modeling multilayered wire strands, a strategy based on 3D finite element beam-to-beam contacts - Part I: Model formulation and validation", Int. J. Mech. Sci., 126, 281-296. https://doi.org/10.1016/j.ijmecsci.2016.12.014.
  30. Langlois, S. and Legeron, F. (2014), "Prediction of aeolian vibration on transmission-line conductors using a nonlinear time history model-Part I: Damper model", IEEE Transactions Power Delivery, 29(3), 1168-1175. https://doi.org/10.1109/TPWRD.2013.2291361.
  31. Langlois, S., Legeron, F. and Levesque, F. (2014), "Time history modeling of vibrations on overhead conductors with variable bending stiffness", IEEE Transactions Power Delivery, 29(2), 607-614. https://doi.org/10.1109/TPWRD.2013.2279604.
  32. Levesque, F., Goudreau, S., Langlois, S. and Legeron, F. (2015), "Experimental study of dynamic bending stiffness of ACSR overhead conductors", IEEE Trans Power Delivery, 30(5), 2252-2259. https://doi.org/10.1109/TPWRD.2015.2424291.
  33. Liu, J., Yan, B., Huang, G., Mou, Z., Lv, X. and Zhang, H. (2020), "Study on mechanical characteristics of conductors with three-dimensional finite-element models", Royal Soc. Open Sci., 7(5). https://doi.org/10.1098/rsos.200309.
  34. Lu, M.L. and Chan, J.K. (2007), "An efficient algorithm for aeolian vibration of single conductor with multiple dampers", IEEE Transactions Power Delivery, 22(3), 1822-1829. https://doi.org/10.1109/TPWRD.2007.899779.
  35. Meynen, S., Verma, H., Hagedorn, P. and Schafer, M. (2005), "On the numerical simulation of vortex-induced vibrations of oscillating conductors", J. Fluids Struct., 21(1), 41-48. https://doi.org/10.1016/j.jfluidstructs.2005.05.019.
  36. Ouaki, B., Goudreau, S., Cardou, A. and Fiset, M. (2003), "Fretting fatigue analysis of aluminium conductor wires near the suspension clamp: Metallurgical and fracture mechanics analysis", J. Strain Anal. Eng. Des., 38(2), 133-147. https://doi.org/10.1243/030932403321163668.
  37. Poffenberger, J.C. and Swart, R.L. (1965), "Differential displacement and dynamic conductor strain", IEEE Transactions Power Apparatus Syst., 84(4), 281-289. https://doi.org/10.1109/TPAS.1965.4766192.
  38. Qi, X. and Jingsu, C. (2011), "Fatigue analysis of composite insulator under aeolian vibration", In: Shanghai. Third International Conference on Measuring Technology and Mechatronics Automation. https://doi.org/10.1109/ICMTMA.2011.331.
  39. Rameez, B., Rajneesh, B. and Amitabh, B. (2019), "Lock-in regimes for Vortex-Induced Vibrations of a cylinder attached to a bistable spring", J. Fluids Struct., 91. https://doi.org/10.1016/j.jfluidstructs.2019.102697.
  40. Ramey, G.E. and Silva, J.M. (1981), "An experimental evaluation of conductor aeolian fatigue damage mitigation by amplitude reduction", IEEE Transactions Power Apparatus Syst., 100(12), 4935-4940. https://doi.org/10.1109/TPAS.1981.316459.
  41. Rocha, P.H.C., Diaz, J.I.M., Silva, C.R.M., Araujo, J.A. and Castro, F.C. (2019), "Fatigue of two contacting wires of the ACSR Ibis 397.5 MCM conductor: Experiments and life prediction", Int. J. Fatigue, 127, 25-35. https://doi.org/10.1016/j.ijfatigue.2019.05.033.
  42. Wang, Y., Mo, Y., Wang, M., Zhou, X., Liang, L. and Zhang, P. (2018), "Impact of conductor temperature time-space variation on the power system operational state", Energies, 11(4), 15. https://doi.org/10.3390/en11040760.
  43. Ye, Z., Pang, K., Du, Y., Zhao, G., Huang, S. and Zhang, M. (2020), "Simulation analysis of the tensile mechanical properties of a hydraulic strain clamp-conductor system", Advan. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/4591812.
  44. You, Y., Zhang, L., Yan, Z., Nie, X. and Wang, F. (2021), "Separate tensile tests of ACSR at high and low temperatures", IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/632/5/052054.
  45. Zhang, M., Xu, J., Zhao, G. and Hao, G. (2018), "Enhanced heat transfer characteristics and ampacity analysis of a high-voltage overhead transmission line under aeolian vibration", IET Generation, Transmission Distribution, 12(12), 2918-2925. https://doi.org/10.1049/iet-gtd.2017.1764.
  46. Zhao, M, Cheng, L, An, H. and Lu, L. (2014), "Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current", J. Fluids Struct., 50, 292-311. https://doi.org/10.1016/j.jfluidstructs.2014.05.016.
  47. Zhou, C.Y., So R.M.C. and Lam K. (1999), "Vortex-induced vibrations of an elastic circular cylinder", J. Fluids Struct., 13(2), 165-189. https://doi.org/10.1006/jfls.1998.0195.
  48. Zhou, Z.R., Cardou, A., Goudreau, S. and Fiset, M. (1994), "Fretting patterns in a conductor-clamp contact zone", Fatigue Fracture Eng. Mater. Struct., 17(6), 661-669. https://doi.org/10.1111/j.1460-2695.1994.tb00264.x.
  49. Zhou, Z.R., Cardou, A., Goudreau, S. and Fiset, M. (1996), "Fundamental investigations of electrical conductor fretting fatigue", Tribology Int., 29(3), 221-232. https://doi.org/10.1016/0301-679X(95)00074-E.