References
- Abou, M.A., Khalil, N.N. and Afify, M.S. (2016), "Dynamic behavior of TLP supporting a 5 -MW wind turbines under multi-directional waves", Ocean Syst. Eng., 6(2), 203-216. http://dx.doi.org/10.12989/ose.2016.6.2.203.
- Antoniou, M., Gelagoti, F. and Anastasopoulos, I. (2019), "A compliant guyed system for deep-sea installations of offshore wind turbines: Concept, design insights and dynamic performance", Soil Dyn. Earthq. Eng., 119, 235-252. https://doi.org/10.1016/j.soildyn.2018.11.030.
- Aslam, M., Islam, N., Zaheer, M.M. and Alam, M. (2013a), "Behaviour of double pendulum loading platform under the ocean current", Int. J. Innovat. Res. Sci. Eng. Technol., 2(6), 2145-2152.
- Aslam, M., Islam, N., Zaheer, M.M. and Alam, M. (2013b), "Comparative response o f double hinged ALP using airy's and Stokes' wave theories", Int. J. Innovat. Res. Sci., Eng. Technol., 2(5), 1532-1539.
- Bae, Y.H. and Kim, M.H. (2011), "Discussion on Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)", Ocean Syst. Eng., 1(3), 243-248. https://doi.org/10.12989/ose.2011.1.3.243.
- Banik, A.K. and Datta, T.K. (2008), "Stability analysis of an articulated loading platform in regular sea", J. Comput. Nonlinear Dyn., 3(1), 1-9. https://doi.org/10.1115/1.2815332.
- Banik, A.K. and Datta, T.K. (2009), "Stability analysis of TLP tethers under vortex-induced oscillations", J. Offshore Mech. Arctic Eng., 131(1), 1-7. https://doi.org/10.1115/1.2948946.
- Bithin, G., Selvam, R.P. and Sundaravadivelu, R. (2015), "Hydrodynamic responses of a single hinged and double hinged articulated towers", Proceedings of the 34th Int. Conference on Ocean, Offshore and Arctic Engineering, May, Newfoundland, Canada.
- Chakrabarti, S.K. (2005), Handbook of Offshore Engineering. Plainfield, Elsevier.
- Chandrasekaran, S. and Kiran, P.A. (2018), "Mathieu stability of offshore Buoyant leg storage and regasification platform", Ocean Syst. Eng., 8(3), 345-360. https:// doi.org/10.12989/ose.2018.8.3.345.
- Chandrasekaran, S. and Madhuri, S. (2015), "Dynamic response of offshore triceratops: Numerical and experimental investigations", Ocean Eng., 109, 401-409. https://doi.org/10.1016/j.oceaneng.2015.09.042.
- Chandrasekaran, S. and Nassery, J. (2017), "Nonlinear response of stiffened triceratops under impact and non-impact waves", Ocean Syst. Eng., 7(3), 179-193. https://doi.org/10.12989/ose.2017.7.3.179.
- Chandrasekaran, S., Bhaskar, K., Harilal, L. and Brijith, R. (2010), "Dynamic response behaviour of multi-legged articulated tower with and without TMD", The Int. Conference on Marine Technology, Dhaka, Bangladesh.
- Chandrasekaran, S., Jain, A.K. and Chandak, N.R. (2007), "Response behavior of triangular tension leg platforms under regular waves using stokes nonlinear wave theory", J. Waterway, Port, Coast. Ocean Eng., 133(3), 230-237. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(230).
- Chandrasekaran, S., Kumar, D. and Ramanthan, R. (2017), "Response control of tension leg platform with passive damper: experimental investigations", Ships Offshore Struct.. Newfoundland, Canada: Taylor & Francis, 12(1), 171-181. https://doi.org/ 10.1080/17445302.2015.1119666.
- Choi, A., Klein, V. and Hershberger, S. (2015), "Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines", Wind Struct., 20(6), 751-761. https://doi.org/10.12989/WAS.2015.20.6.751.
- Craig, R.R. (1981), Structural Dynamics: An Introduction to Computer Methods. John Wiley, New York.
- Dawson, T.H. (1983), Offshore Structural Engineering. Prentice-Hall, Englewood Cliffs, N.J.
- Deng, J., Fan, F., Liu, P., Huang, S., and Lin, Y. (2019), "Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation", Chinese J. Aeronaut., Chinese Soc. Aeronaut. Astronaut., 32(3), 568-576. https://doi.org/10.1016/j.cja.2018.12.026.
- Donelan, M.A., Haus, B.K., Reul, N., Plant, W.J., Stiassnie, M., Graber, H.C. and Saltzman, E.S. (2004), "On the limiting aerodynamic roughness of the ocean in very strong winds", Geophys. Res. Lett., 31, L18306. https://doi.org/10.1029/2004GL019460.
- Elshafey, A.A., Haddara, M.R. and Marzouk, H. (2011), "Estimation of excitation and reaction forces for offshore structures by neural networks", Ocean Syst. Eng., 1(1), 1-15. https://doi.org/10.12989/ose.2011.1.1.001.
- Fang, C., Li, Y., Chen, X. and Tang, H. (2019a), "Extreme response of a sea-crossing bridge tower under correlated wind and waves", J. Aeros. Eng., 32(6), 1-13. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001083.
- Fang, C., Li, Y., Wei, K., Zhang, J. and Liang, C. (2019b), "Vehicle-bridge coupling dynamic response of sea-crossing railway bridge under correlated wind and wave conditions", Advan. Struct. Eng., 22(4), 893-906. https://doi.org/10.1177/1369433218781423.
- Gavassoni, E., Goncalves, B.P. and Roehl, D.M. (2015), "Nonlinear vibration modes of an offshore articulated tower", Ocean Eng., 109, 226-242. https://doi.org/10.1016/j.oceaneng.2015.08.028.
- Ghorai, B., Selvam, P. and Sundaravadivelu, R. (2015), "Hydrodynamic responses of a single hinged and double hinged articulated tower 415-24", Proc. of OMAE. Newfoundland, https://doi.org/10.1115/OMAE2015-41524.
- Gurley, K. and Kareem, A. (1993), "Gust loading factors for tension leg platforms", Appl. Ocean Res., 15(3), 137-154. https://doi.org/10.1016/0141-1187(93)90037-X.
- Han, C., Jung, S. and Park, S. (2014), "Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines", Wind Struct., 18(3), 267-279. https://doi.org/10.12989/WAS.2014.18.3.267.
- Hasan, S.D., Islam, N. and Moin, K. (2011), "Multihinged articulated offshore tower under vertical ground excitation", J. Struct. Eng., 137(April), 469-480. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000284.
- Ibrahim, A.E. and Jameel, M. (2018), "Wind induced response of spar-mooring-riser system", KSCE J. Civil Eng., 22(8), 2653- 2663. https://doi.org/10.1007/s12205-017-1914-x.
- Islam, N., Zaheer, M.M. and Ahmed, S. (2009a), "Double hinged articulated tower interaction with wind and waves", J. Wind Eng. Ind. Aerod., 97(5). https://doi.org/10.1016/j.jweia.2009.07.002.
- Islam, N., Zaheer, M.M. and Ahmed, S. (2009b), "Response of double hinged articulated tower platforms to wind forces", Wind Struct., 12(2), 103-120. https://doi.org/10.12989/was.2009.12.2.103.
- Jaksic, V., O'Shea, R., Cahill, P., Murphy, J., Mandic, D.P. and Pakrashi, V. (2015), "Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin", Philosoph. Transactions Royal Soc. A: Mathem., Phys. Eng. Sci., 373(20). https://doi.org/10.1098/rsta.2014.0078.
- Jameel, M., Oyejobi, D.O., Siddiqui, N.A. and Sulong, N.H.R. (2016), "Nonlinear dynamic response of tension leg platform under environmental loads", KSCE J. Civil Eng., 1-9. https://doi.org/10.1007/s12205-016-1240-8.
- Kareem, A. (1985). "Wind-induced response analysis of tension leg platforms", J. Struct. Engg, 111(1), 37-55. https://doi.org/10.1061/(ASCE)0733-9445.
- Kareem, A. and Dalton, C. (1982), "Dynamic effects of wind on tension Leg Platforms", Proceedings of Offshore Technology Conference. Houston, Texas, U.S.A.
- Karimrad, M., Meissonnier, Q. and Moan, T. (2011), "Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine, Marine Struct., 24(4), 412-435. https://doi.org/10.1016/j.marstruc.2011.05.006.
- Kim, C.M., Cho, J.R., Kim, S.R. and Lee, Y.S. (2017), "Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine", Wind Struct., 24(4), 333-350. https://doi.org/10.12989/WAS.2017.24.4.333.
- Kim, H.C. and Kim, M.H. (2015), "Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects", Ocean Syst. Eng., 5(3), 139-160. https://doi.org/10.12989/ose.2015.5.3.139.
- Lamei, A. and Hayatdavoodi, M. (2020), "On motion analysis and elastic response of floating offshore wind turbines", J. Ocean Eng. Marine Energy, 6(1), 71-90. https://doi.org/10.1007/s40722-019-00159-2.
- Lancelot, N. and Philip, V. (2016), "Effectiveness of spring mass dampers in articulated platform supporting offshore wind turbine", Int. J. Res. IT, Mang Eng, 6(8), 37-44.
- Liu, H., Chen, G., Lyu, T., Lin, H. Zhu, B. and Huang, A. (2016), "Wind-induced response of large offshore oil platform", Petroleum Explor. Develop., Research Institute of Petroleum Exploration and Development, Petro China, 43(4), 708-716. https://doi.org/10.1016/S1876-3804(16)30083-0.
- Ma, J., Zhou, D., Han, Z., Zhang, K., Bao, Y. and Dong, Li. (2019), "Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform", Int. J. Naval Architect. Ocean Eng., 11(1), 624-637. https://doi.org/10.1016/j.ijnaoe.2018.11.001.
- Mitra, R.K., Banik, A.K., Datta, T.K. and Chatterjee, S. (2018), "Nonlinear roll oscillation of semisubmersible system and its control", Int. J. Nonlinear Mech., 107(September),42-55. https://doi.org/10.1016/j.ijnonlinmec.2018.10.006
- Myrhaug, D. (2007), "Wind gust spectrum over waves: Effect of wave age", Ocean Eng., 34, 353-358. https://doi.org/10.1016/j.oceaneng.2006.01.003.
- Nagamani, K. and Ganapathy, C. (2000), "The dynamic response of a three-leg articulated tower", Ocean Eng., 27(12), 1455-1471. https://doi.org/10.1016/S0029-8018(99)00049-9.
- Nagavinothini, R. and Chandrasekaran, S. (2019), "Dynamic analyses of o ff shore triceratops in ultra-deep waters under wind, wave, and current", Struct., 20(March), 279-289. https://doi.org/10.1016/j.istruc.2019.04.009.
- Philip, V., Joseph, A. and Joy, C. M. (2015), "Three legged articulated support for 5 MW offshore wind turbine", Aquatic Procedia. 4(Icwrcoe), 500-507. https://doi.org/10.1016/j.aqpro.2015.02.065.
- Ryu, C.S. and Yun, C.B. (1997), "Non-stationary response analysis of offshore guyed tower subjected to earthquake loading", Eng. Struct., 19(1), 63-70. https://doi.org/10.1016/S0141-0296(96)00052-1.
- Sedillot, F., Dorris, C.G. and Stevenson, A. (1982), "Laminated rubber articulated joint for the deep water gravity tower", Proc. of 14th Annual Offshore Tech. Conf., 1, 341-350, Houston, Texas, U.S.A.
- Solomon, K. and Kumar, D. (2019), "Optimal control for response reduction of single hinged articulated tower using MR-damper", Proceedings of OMAE, 3, Glasgow, Scotland, U.K.
- Vickery, P.J. (1995), "Wind-induced response of tension leg platform: Theory and Experiment", J. Struct. Eng., 121(4), 651-663. https://doi.org/10.1016/0167-6105(90)90087-S.
- Zaheer, M.M. and Islam, N. (2008), "Aerodynamic response of articulated towers: state-of-the-art", Wind Struct., 11(2), 97-120. https://doi.org/10.12989/was.2008.11.2.097.
- Zaheer, M.M. and Islam, N. (2008), "Fluctuating wind induced response of double hinged articulated loading platform", Proc. of the 27th Int Conf. On Offshore Mech. Arctic Engg., 1, 723-731. https://doi.org/10.1115/OMAE2008-57723.
- Zaheer, M.M. and Islam, N. (2009), "Dynamic response of articulated tower platforms to random sea environment", Proc. of the International Conference on Offshore Mechanics and Arctic Engineering, 1, 327-332. Honolulu, Hawaii, U.S.A.
- Zaheer, M.M. and Islam, N. (2009), "Fatigue and fracture reliability of articulated tower joint under random loading", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2, 277-283. Honolulu, Hawaii, U.S.A.
- Zaheer, M.M. and Islam, N. (2010), "Reliability analysis of universal joint of a compliant platform", Fatigue Fracture Eng. Mater. Struct., 33(7), 408-419. https://doi.org/10.1111/j.1460-2695.2010.01453.x.
- Zaheer, M.M. and Islam, N. (2012), "Stochastic response of a double hinged articulated leg platform under wind and waves", J. Wind Eng. Ind. Aero., 111, 53-60. https://doi.org/10.1016/j.jweia.2012.08.005.
- Zaheer, M.M. and Islam, N. (2017), "Dynamic response of articulated towers under correlated wind and waves", Ocean Eng., 132, 114-125. https://doi.org/10.1016/j.oceaneng.2017.01.019.
- Zaheer, M.M. and Islam, N. (2020a), "Effect of current on the dynamic response of a bi-articulated offshore tower", Advan. Struct. Eng., 1-13. https://doi.org/10.1177/1369433220930324.
- Zaheer, M.M. and Islam, N. (2020b), "Effect of wind field simulation approach on the response of a compliant offshore tower", Proc. of the The 2020 World Congress on Adv. in Civil, Environmental, and Materials Research, 25-28, August, Seoul, Korea.
- Zaheer, M.M., Islam, N. and Aslam, M. (2014), "Response of a double pendulum compliant offshore tower to collinear wave and current forces", Int. J. Innovat. Res. Sci., Eng. Technol., 3(1), 8398-8411.
- Zhang, B.L., Han, Q.L. and Zhang, X.M. (2017), "Recent advances in vibration control of offshore platforms", Nonlinear Dyn., 89(2), 755-771. https://doi.org/10.1007/s11071-017-3503-4.