DOI QR코드

DOI QR Code

Accumulation of Natural and Artificial Radionuclides in Marine Products around the Korean Peninsula: Current Studies and Future Direction

국내산 수산물 내 자연 및 인공방사능 축적 연구 현황 및 향후 연구 방향

  • Lee, Huisu (Division of Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Kim, Intae (Division of Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST))
  • 이희수 (한국해양과학기술원 해양환경연구센터) ;
  • 김인태 (한국해양과학기술원 해양환경연구센터)
  • Received : 2021.07.07
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

The Fukushima nuclear power plant (NPP) accident caused by the East Japan Earthquake in 2011 and the recent increase in the frequency of earthquakes in Korea have caused safety concerns regarding radionuclide exposure. In addition, the Tokyo Electric Power Company (TEPCO) in Japan recently decided to release radionuclide-contaminated water from Fukushima's NPP into the Pacific Ocean, raising public concerns that the possibility of radionuclide contamination through both domestic- and foreign fishery products is increasing. Although many studies have been conducted on the input of artificial radionuclides into the Pacific after the Fukushima NPP accident, studies on the distribution and accumulation of artificial radionuclides in marine products from East Asia are lacking. Therefore, in this study, we attempted to explore recent research on the distribution of artificial radionuclides (e.g., 137Cs, 239+240Pu, 90Sr, and etc.) in marine products from Korean seas after the Fukushima NPP accident. In addition, we also discuss future research directions as it is necessary to prepare for likely radiation accidents in the future around Korea associated with the new nuclear facilities planned by 2030 in China and owing to the discharge of radionuclide-contaminated water from the Fukushima NPP.

2011년 동일본대지진에 의해 발생한 후쿠시마 원자력 발전소 사고와 최근 국내 지진 발생 빈도의 증가는 원자력 발전소의 지진 안전성에 대한 불안감을 야기하였다. 더불어 최근(2021년) 일본 동경전력은 후쿠시마 원전 오염수의 태평양 방류를 결정하였으며, 이로 인해 국내외 수산물을 통한 방사능 오염 가능성이 높아지면서 국민들의 우려가 급증하고 있다. 후쿠시마 원전사고 이후 해양으로의 인공방사능 유입에 관한 연구는 국제적으로 많이 이루어졌으나, 한국인의 주요 식재료인 동아시아 연근해의 수산물에서 인공방사능의 분포 현황 및 축적에 대한 연구는 상대적으로 부족한 실정이다. 따라서 이 논문에서는 후쿠시마 원전사고 이후, 국내산 수산물에서의 원전 기원 인공방사능(예, 137Cs, 239+240Pu, 90Sr 등)의 분포 특성과 관련한 최근 연구 사례들을 소개하고자 한다. 또한, 후쿠시마 원전오염수의 방류와 더불어 2030년까지 계획된 중국의 신규 원전 시설로 인한 향후 한반도 주변해역의 방사능 유출 영향에 대한 대비 및 사전 연구가 필요한 시점이기에 향후 연구 방향들을 제안하고자 한다.

Keywords

Acknowledgement

이 논문은 한국해양과학기술원(KIOST)의 주요연구사업 "생지화학 순환 및 해양환경변동 연구" (PE99912)의 연구비 지원을 받아 작성되었습니다. 본 논문의 완성도를 높이기 위한 좋은 지적과 제안을 해주신 3인의 익명의 심사자 분들께 감사의 말씀을 드립니다. 또한, 이 논문 작성에 도움을 주신 김석현 박사님, 이현미 연구원, 이재은 연구원에게도 감사의 말씀을 드립니다.

References

  1. Aoyama, M., Y. Hamajima, M. Hult, M. Uematsu, E. Oka, D. Tsumune, and Y. Kumamoto(2015), 134Cs and 137Cs in the North Pacific Ocean derived from the march 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. part one: Surface pathway and vertical distributions, Journal of Oceanography, Vol. 72, No. 1, pp. 53-65. https://doi.org/10.1007/s10872-015-0335-z
  2. Byun, M. W.(2011), Fukushima nuclear power plant accidents and food safety, Food Science and Industry, Vol. 44, No. 2, pp. 9-15. https://doi.org/10.23093/FSI.2011.44.2.9
  3. Casacuberta, N., P. Masque, J. Garcia-Orellana, J. Garcia-Tenorio, and K. O, Buesseler(2013), 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident, Biogeosciences, Vol. 10, No. 6, pp. 3649-3659. https://doi.org/10.5194/bg-10-3649-2013
  4. Choi, Y. H., K. H. Chung, K. J. Chun, S. R. Kim, and J. H. Lee(1991), Sr-90 Uptake by the Barley (Hordeum vulgare L. emend. Lamark) and Soil-to-Plant Transfer Coefficient, Journal of Radiation Protection and Research, Vol. 16, No. 1, pp. 33-42.
  5. Choo, H. S. and D. S. Kim(1998), The effect of variations in the Tsushima warm currents on the egg and larval transport of anchovy in the southern sea of Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 31, No. 2, pp. 226-244.
  6. Clark, M. J. and F. B. Smith(1988), Wet and dry deposition of Chernobyl releases, Nature, Vol. 332, No. 6161, pp. 245-249. https://doi.org/10.1038/332245a0
  7. Coyle, P., J. C. Philcox, L. C. Carey, and A. M. Rofe(2002), Metallothionein: The multipurpose protein, Cellular and Molecular Life Sciences CMLS, Vol. 59, No. 4, pp. 627-647. https://doi.org/10.1007/s00018-002-8454-2
  8. De Cort, M., G. Dubois, S. D. Fridman, M. G. Germenchuk, Y. A. Izrael, A. Janssens, A. R. Jones, G. N. Kelly, E. V. Kvasnikova, I. I. Matveenko, I. M. Nazarov, Y. Pokumeiko, V. A. Sitak, E. D. Stukin, L. Y. Tabachny, Y. Tsaturov, and S. I. Avdyushin(1998), Atlas of Caesium Deposition on Europe After the Chernobyl Accident; EUR Report Nr. 16733, Office for Official Publications of the European Communities, ECSC-EEC-EAEC, Brussels-Luxembourg, pp. 1-63 (Catalogue number CG-NA-16-733-29-C).
  9. Devell, L., S. Guntay, and D. A. Powers(1995), The Chernobyl reactor accident source term. In: Development of a Consensus View (No. NEA-CSNI-R-1995-24), Organisation for Economic Co-Operation and Development-Nuclear Energy Agency (OECD Nuclear Energy Agency, Paris).
  10. Donaldson, L. R., A. H. Seymour, and A. E. Nevissi(1997), University of Washington's radioecological studies in the Marshall Islands, 1946-1997, Health Physics, Vol. 73, No. 1, pp. 214-222. https://doi.org/10.1097/00004032-199707000-00018
  11. Hong, G. H., C. S. Chung, S. H. Lee, S. H. Kim, M. Baskaran, H. M. Lee, Y. I. Kim, D. B. Yang, and C. K. Kim(2006), Artificial radionuclides in the yellow sea: inputs and redistribution, Radioactivity in the Environment, Vol. 8, pp. 96-133. https://doi.org/10.1016/S1569-4860(05)08007-1
  12. IAEA(2004), Sediment Distribution Coefficients and Concentration Factors for Biota in Marine Environment, International Atomic Energy Agency (IAEA), Technical Report Series, No. 422.
  13. IAEA(2021), https://pris.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=KR, International Atomic Energy Agency (IAEA).
  14. ICRP(2007), The 2007 recommendations of the International Commission on Radiological Protection, International Commission on Radiological Protection (ICRP), Ann. ICRP, Vol. 37, No. 2-4, pp. 16-38.
  15. Jung, J. W., J. G. Ha, D. Hahm, and M. K. Kim(2021), In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests, Journal of the Earthquake Engineering Society of Korea, Vol. 25, No. 3, pp. 129-135. https://doi.org/10.5000/EESK.2021.25.3.129
  16. Kang, M. H., S. G. Choi, and B. K. Hwang(2014), Acoustic characteristics of Anchovy schools, and visualization of their connection with water temperature and salinity in the Southwestern Sea and the Westsouthern Sea of South Korea, Journal of the Korean Society of Fisheries and Ocean Technology, Vol. 50, No. 1, pp. 39-49. https://doi.org/10.3796/KSFT.2014.50.1.039
  17. Kim, B. D. and S. G. Yoon(2013), Changes of Nuclear Promotion Strategies in South Korea after the Fukushima Nuclear Accident, Korean Sociological Association, pp. 509-529.(http://www.ksa21.or.kr/content/lib/simpo_view.php?id=1900)
  18. Kim, J. K.(2009), Diversity and conservation of Korean marine fishes, Korean Journal of Ichthyology, Vol. 21, No. 1, pp. 52-62.
  19. Kim, S. H., G. H. Hong, H. M. Lee, and B. E. Cho(2017), 210Po in the marine biota of Korean coastal waters and the effective dose from seafood consumption, Journal of Environmental Radioactivity, Vol. 174, pp. 30-37. https://doi.org/10.1016/j.jenvrad.2016.11.001
  20. Kim, S. H., H. M. Lee, S. H. Lee, and I. T. Kim(2019), Distribution and accumulation of artificial radionuclides in marine products around Korean Peninsula, Marine Pollution Bulletin, Vol. 146, pp. 521-531. https://doi.org/10.1016/j.marpolbul.2019.06.082
  21. Kim, S. H., S. H. Lee, H. M. Lee, and G. H. Hong(2020), Distribution of 239,240Pu in marine products from the seas around the Korean Peninsula after the Fukushima nuclear power plant accident, Journal of Environmental Radioactivity, Vol. 217, pp. 521-531.
  22. Kobayashi, T., H. Nagai, M. Chino, and H. Kawamura(2013), Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations, Journal of Nuclear Science and Technology, Vol. 50, No. 3, pp. 255-264. https://doi.org/10.1080/00223131.2013.772449
  23. KREI(2012), Food Supply Table. Korea Rural Economic Institute (KREI), Rep. of Korea.
  24. KREI(2016), 2016 Food Balance Sheet (in Korean), Korea Rural Economic Institute (KREI), http://library.krei.re.kr/pyxis-api/1/digital-files/5251e7c7-2191-4284-8f7c-5fe8eb93d0c5.
  25. Kwag, S. Y., Y. H. Ryu, and B. S. Ju(2020), Efficient Seismic Fragility Analysis for Large-Scale Piping System Utilizing Bayesian Approach, Applied Sciences, Vol. 10, No. 4, p. 1515. https://doi.org/10.3390/app10041515
  26. Lee, S. H., P. P. Povinec, J. Gastaud, J. J. La Rosa, E. Wyse, and L. K. Fifield(2009), Determination of plutonium isotopes in seawater samples by Semiconductor Alpha Spectrometry, ICP-MS and AMS techniques, Journal of Radioanalytical and Nuclear Chemistry, Vol. 282, No. 3, pp. 831-835. https://doi.org/10.1007/s10967-009-0154-z
  27. Lee, D. M. and J. H. Lee(2016), Assessment of Potential Radiation Dose Rates to Marine Organisms Around the Korean Peninsula, Journal of Radiation Protection and Research, Vol. 41, No. 1, pp. 1-6. https://doi.org/10.14407/jrpr.2016.41.1.001
  28. Lee, S. H., J. S. Oh, K. B. Lee, J. M. Lee, S. H. Hwang, M. K. Lee, E. H. Kwon, C. S. Kim, I. H. Choi, I. Y. Yeo, J. Y. Yoon, and J. M. Im(2018), Evaluation of abundance of artificial radionuclides in food products in South Korea and sources, Journal of Environmental Radioactivity, Vol. 184, pp. 46-52. https://doi.org/10.1016/j.jenvrad.2018.01.008
  29. Lee, H. S. and I. T. Kim(2021), Accumulations of artificial radionuclides 137Cs and 239+240Pu in anchovy from the Korean seas, Radioprotection.
  30. Miki, S., K. Fujimoto, Y. Shigenobu, D. Ambe, H. Kaeriyama, K. Takagi, T. Ono, T. Watanabe, H. Sugisaki, and T. Morita (2017), Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Daiichi nuclear power plant accident, Fisheries Oceanography, Vol. 26, No. 2, pp. 221-233. https://doi.org/10.1111/fog.12182
  31. Miller, J. R. and R. F. Reitemeier(1963), The leaching of radiostrontium and radiocesium through soils, Soil Science Society of America Journal, Vol. 27, No. 2, pp. 141-144. https://doi.org/10.2136/sssaj1963.03615995002700020016x
  32. Park, I. S., K. S. Kim, B. C. Han, Y. J. Choung, B. Y. Gu, J. T. Han, and G. K. Kim(2021), A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea, The Korean Association of Geographic Information Studies, Vol. 24, No. 1, pp. 126-137.
  33. Peirson, D. H., R. S. Cambray, P. A. Cawse, J. D. Eakins, and N. J. Pattenden(1982), Environmental radioactivity in Cumbria, Nature, Vol. 300, No. 5887, pp. 27-31. https://doi.org/10.1038/300027a0
  34. Singhal, R. K., K. Ajay, N. Usha, and A. V. R. Reddy(2009), Evaluation of doses from ionising radiation to non-human species at Trombay, Mumbai, India, Radiation Protection Dosimetry, Vol. 133, No. 4, pp. 214-222. https://doi.org/10.1093/rpd/ncp048
  35. Tsumura, A., M. Komamura, and H. Kobayashi(1984), Behavior of radioactive Sr and Cs in soils and soil-plant systems, Nogyo Gijutsu Kenkyusho Hokoku, B: Dojo Hiryo (ISSN 0077-4839), No. 36, pp. 57-113.
  36. UNSCEAR(2000), Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), report to the General Assembly, Sources and Effects of Ionizing Radiation, Vol. 1.