DOI QR코드

DOI QR Code

A Numerical Study on Smoke Behavior of Fishing Vessel Engine Room

어선 기관실의 연기 거동에 관한 수치해석 연구

  • JANG, Ho-Sung (Department of Mechanical System Engineering, Pukyong National University) ;
  • JI, Sang-Won (Department of Mechanical System Engineering, Pukyong National University)
  • 장호성 (부경대학교 기계시스템공학과) ;
  • 지상원 (부경대학교 기계시스템공학과)
  • Received : 2021.08.06
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

The ventilation system of the engine room of a ship is generally installed to supply the combustion air necessary for the internal combustion engine and to remove the heat source generated in the engine room, and it must satisfy the international standard (ISO 8861) for the design conditions and calculation standards for the ventilation of the ship engine room. The response delay of the ventilation system including the fire detector is affected by the airflow formed inside the area and the location of the fire detector. In this study, to improve the initial fire detection response speed of a fire detector installed on a fishing vessel and to maintain the sensitivity of the installed detector, the smoke behavior was simulated using the air flow field inside the engine room, the amount of combustion air in the internal combustion engine, and the internal pressure of the engine room as variables. Analysis of the simulation results showed that reducing the flow rate in the air flow field and increasing the vortex by reducing the internal pressure of the engine room and installing a smoke curtain would accelerate the rise of the ceiling of the smoke component and improve the smoke detector response speed and ventilation system.

선박 기관실 통풍 설계조건 및 계산 기준에 관한 국제 표준(ISO 8861)을 만족해야 하는 선박 기관구역의 환기시스템은 일반적으로 내연기관에 필요한 연소공기의 공급과 기관구역에서 발생한 열원을 제거하기 위해 설치되며 화재감지기가 포함된 환기시스템의 응답지연은 구역 내부에 형성된 기류와 화재감지기의 설치 위치에 영향을 받는다. 어선에서 발생하는 화재는 상선과 비교하여 인명피해 가능성이 높으므로 화재 조기 감지가 무엇보다 중요하다. 따라서 본 논문에서는 어선에 설치되는 화재 감지기의 초기 화재감지 응답속도 향상과 설치된 감지기의 감도 유지를 위해 기관구역 내부에서 발생한 정량적 연기량에 따른 공기 유동장, 내연기관 연소 공기량 및 기관 구역 내부 압력을 변수로 연기 거동 시뮬레이션이 가능한 해석모델을 구성하여 선박 기관구역 내부의 연기 거동을 시뮬레이션하였다. 시뮬레이션 결과를 통해 기관실 내부 압력을 감소시키고 연기커튼 설치를 통해 공기 유동장에서의 유속을 감소시키고 와류를 증가시키면 연기 성분의 천장 상승이 가속화되어 연기감지기 응답속도 및 환기시스템이 개선될 수 있을 것으로 해석되었다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2019년)에 의하여 연구되었음.

References

  1. ANSYS(2009), ANSYS CFX-Solver Theory Guide, Release 12.1, pp. 18-58.
  2. Chen, X., S. Ziyan, and J. Yang(2020), Comparison between Actual and Simulated Smoke for Smoke Detection Certification in Aircraft Cargo Compartments Using the CFD Method, Fire Technology, Vol. 56, No. 2, pp. 469-488. https://doi.org/10.1007/s10694-019-00887-9
  3. Choi, M. S. and K. O. Lee(2018), Study on Influence of Air Flow of Ceiling Type Air Conditioner on Fire Detector Response, Fire Science and Engineering, Vol. 32, No. 5, pp. 40-45. https://doi.org/10.7731/KIFSE.2018.32.5.040
  4. Giannoutsos, S. V. and S. N. Manias(2016), Improving Engine Room Ventilation Systems: A Data-Driven Process Controller for Energy-Efficient, Variable-Speed Fan Operation in Marine Vessels, IEEE Industry Applications Magazine, Vol. 22, No. 6, pp. 66-81. https://doi.org/10.1109/MIAS.2015.2459088
  5. Horng, W. and K. Shaw(2017), A Study on the Intergrated Design of Engine room Ventilation, Journal of Marine Science and Technology, Vol. 25, No. 1, pp. 70-83.
  6. ISO 8861(1998), Engine-room Ventilation in Diesel-Engined Ships Design Requirements and Basis of Calculations, International organization for standardization.
  7. Koo, K. H., C. U. Sung, Y. J. Hwang, and J. K. Lee(2009), A Study on the Characteristics of Differential Pressure According to Main Engine Load and a Process of Supply Air For Combustion, Journal of Advanced Marine Engineering and Technology, Vol. 33, No. 6, pp. 822-826. https://doi.org/10.5916/jkosme.2009.33.6.822
  8. Lee, C. H., H. S. Lee, and S. K. Kim(2017), A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust and Wind Velocity, Fire Science and Engineering, Vol. 31, No. 1, pp. 50-57. https://doi.org/10.7731/KIFSE.2017.31.1.050
  9. Lee, H. and H. K. Seo(2004), Ventilation Analysis for an Engine Room of a Ship, Journal of the Society of Naval Architects of Korea, Vol. 41, No. 5, pp. 63-69. https://doi.org/10.3744/SNAK.2004.41.5.063
  10. Lu, K. H., S. H. Mao, J. Wang, and S. Lu(2017), Numerical Simulation of the Ventilation Effect on Fire Characteristics and Detections in an Aircraft Cargo Compartment, Vol. 124, pp. 1441-1446. https://doi.org/10.1016/j.applthermaleng.2017.06.128
  11. Roh, J. S., H. S. Ryou, W. H. Park, and Y. J. Jang(2009), CFD Simulation and Assessment of Life Safety in a Subway Train Fire, Tunnelling and Underground Space Technology, Vol. 24, No. 4, pp. 447-453. https://doi.org/10.1016/j.tust.2008.12.003
  12. Ryu, K. J.(2017), Application of SPS Code and Analysis on Status of Port State Control in Korea Fishery Training Ship, Korea Society for Fisheries and Marine Sciences Education, Vo. 29, No. 3, pp. 711-718. https://doi.org/10.13000/JFMSE.2017.29.3.711
  13. Ryu, S. Y.(2019), Mandatory Installation of Fire Alarm Devices on Fishing Boats, Ministry of Oceans and Fisheries.
  14. Yuen, A. C. Y., T. B. Y. Chen, W. Yang, C. Wang, A. Li, G. H. Yeoh, Q. N. Chan, and M. C. Chan(2019), Natural Ventilated Smoke Control Simulation Case Study Using Different Settings of Smoke Vents and Curtains in a Large Atrium, Fire, Vol. 2, No. 1, 7. https://doi.org/10.3390/fire2010007
  15. Zanzi, C., P. Gomez, J. Lopez, and J. Hernandez(2019), Analysis of Heat and Smoke Propagation and Oscillatory Flow through Ceiling Vents in a Large-Scale Compartment Fire, Applied Sciences, Vol. 9, No. 16, 3305. https://doi.org/10.3390/app9163305