DOI QR코드

DOI QR Code

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae (Department of Biology Education, Chonnam National University and Khumho Research Institute) ;
  • Wi, Jiwoong (Department of Biology Education, Chonnam National University and Khumho Research Institute) ;
  • Im, Sungoh (Department of Biology Education, Chonnam National University and Khumho Research Institute) ;
  • Lim, Ka-Min (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Hun-Dong (Department of Biology, Chonnam National University) ;
  • Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Geun-Joong (Department of Biology, Chonnam National University) ;
  • Kim, Chan Song (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Park, Eun-Jeong (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Hwang, Mi Sook (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science) ;
  • Choi, Dong-Woog (Department of Biology Education, Chonnam National University and Khumho Research Institute)
  • Received : 2021.07.08
  • Accepted : 2021.08.26
  • Published : 2021.09.15

Abstract

An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

Keywords

Acknowledgement

This works was supported by the Korean Institute of Planning and Evaluation for Technology, Agriculture, Forestry and Fisheries (IPET) through a Golden Seed Project (Project number, 213008-05-4-SB830), funded by the Ministry of Oceans and Fisheries (MOF) and a grant (R2021013) from the National Institute of Fisheries Science, Republic of Korea.

References

  1. Avila, M., Santelices, B. & McLachlan, J. 1986. Photoperiod and temperature regulation of the life history of Porphyra columbina (Rhodophyta, Bangilaes) from central Chile. Can. J. Bot. 64:1867-1872. https://doi.org/10.1139/b86-247
  2. Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
  3. Chan, C. X., Blouin, N. A., Zhuang, Y., Zauner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Muller, K., Stiller, J. W., Brawley, S. H. & Bhattacharya, D. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J. Phycol. 48:1328-1342. https://doi.org/10.1111/j.1529-8817.2012.01229.x
  4. Chen, P., Jung, N. U., Giarola, V. & Bartels, D. 2020. The dynamic responses of cell walls in resurrection plants during dehydration and rehydration. Front. Plant Sci. 10:1698. https://doi.org/10.3389/fpls.2019.01698
  5. Chen, S. & Li, H. 2017. Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels, revealed by RNA-seq in Brachypodium distachyon. Front. Plant Sci. 7:2067.
  6. Choi, J. Y., Seo, Y. S., Kim, S. J., Kim, W. T. & Shin, J. S. 2011. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep. 30:867-877. https://doi.org/10.1007/s00299-010-0989-3
  7. Choi, S., Hwang, M. S., Im, S., Kim, N., Jeong, W. -J., Park, E.-J., Gong, Y. -G. & Choi, D. -W. 2013. Transcriptome sequencing and comparative analysis of the gametophyte of Pyropia tenera under normal and high-temperature condition. J. Appl. Phycol. 25:1237-1246. https://doi.org/10.1007/s10811-012-9921-2
  8. Dai, Y. L., Kim, G. H., Kang, M. C. & Jeon, Y. J. 2020. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model. Algae 35:189-200. https://doi.org/10.4490/algae.2020.35.5.14
  9. Eklof, J. M. & Brumer, H. 2010. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 153:456-466. https://doi.org/10.1104/pp.110.156844
  10. Ha, Y. I., Lim, J. M., Ko, S. -M., Liu, J. R. & Choi, D. -W. 2007. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance. Gene 386:115-122. https://doi.org/10.1016/j.gene.2006.08.026
  11. Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121. https://doi.org/10.4490/algae.2020.35.5.15
  12. Hwang, M. -S., Chung, I. -K. & Oh, Y. -S. 1997. Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12:207-213.
  13. Im, S., Choi, S., Hwang, M. S., Park, E. -J., Jeong, W. -J. & Choi, D. -W. 2015. De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J. Appl. Phycol. 27:1343-1353. https://doi.org/10.1007/s10811-014-0406-3
  14. Im, S., Lee, H. -N., Jung, H. S., Yang, S., Park, E. -J., Hwang, M. S., Jeong, W. -J. & Choi, D. -W. 2017. Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar. Biotechnol. 19:232-245. https://doi.org/10.1007/s10126-017-9744-x
  15. Kim, M., Wi, J., Lee, J., Cho, W. -B., Park, E. -J., Hwang, M. -S., Choi, S. -J., Jeong, W. -J., Kim, G. H. & Choi, D. -W. 2021. Development of genomic simple sequence repeat (SSR) markers of Pyropia yezoensis (Bangiales, Rhodophyta) and evaluation of genetic diversity of Korean cultivars. J. Appl. Phycol. Advanced online publication. https://doi.org/10.1007/s10811-021-05236-7.
  16. Le Gall, H., Philippe, F., Domon, J. -M., Gillet, F., Pelloux, J. & Rayon, C. 2015. Call wall metabolism in response to abiotic stress. Plants 4:112-166. https://doi.org/10.3390/plants4010112
  17. Livingston, D. P., Hincha, D. K. & Heyer, A. G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66:2007-2023. https://doi.org/10.1007/s00018-009-0002-x
  18. Lu, Y. & Xu, J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20:273-282. https://doi.org/10.1016/j.tplants.2015.01.006
  19. Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H. & Yan, X. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE 9:e94354. https://doi.org/10.1371/journal.pone.0094354
  20. McLachlan, J. 1973. Growth media-marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 25-51.
  21. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  22. Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  23. Moore, J. P., Vicre-Gibouin, M., Farrant, J. M. & Driouich, A. 2008. Adaptations of higher plant cell walls to water loss: drought vs. desiccation. Physiol. Plant. 134:237-245. https://doi.org/10.1111/j.1399-3054.2008.01134.x
  24. Na, Y., Lee, H. -N., Wi, J., Jeong, W. -J. & Choi, D. -W. 2018. PtDRG1, a desiccation response gene from Pyropia tenera (Rhodophyta), exhibits chaperone function and enhances abiotic stress tolerance. Mar. Biotechnol. 20:584-593. https://doi.org/10.1007/s10126-018-9828-2
  25. Popper, Z. A., Ralet, M. -C. & Domozych, D. S. 2014. Plant and algal cell walls: diversity and functionality. Ann. Bot. 114:1043-1048. https://doi.org/10.1093/aob/mcu214
  26. Rienth, M., Torregrosa, L., Luchaire, N., Chatbanyong, R., Lecourieux, D., Kelly, M. T. & Romieu, C. 2013. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol. 14:108. https://doi.org/10.1186/1471-2229-14-108
  27. Rodriguez, M. C. S., Edsgard, D., Hussain, S. S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B. H., Bartels, D. & Mundy, J. 2010. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63:212-228. https://doi.org/10.1111/j.1365-313X.2010.04243.x
  28. Sasidharan, R., Voesenek, L. A. C. J. & Pierik, R. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30:548-562. https://doi.org/10.1080/07352689.2011.615706
  29. Senechal, F., Wattier, C., Rusterucci, C. & Pelloux, J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65:5125-5160. https://doi.org/10.1093/jxb/eru272
  30. Shin, Y. J., Min, S. R., Kang, D. Y., Lim, J. -M., Park, E. -J., Hwang, M. S., Choi, D. -W., Ahn, J. -W., Park, Y. -I. & Jeong, W. -J. 2018. Characterization of high temperature-tolerant strains of Pyropia yezoensis. Plant Biotechnol. Rep. 12:365-373. https://doi.org/10.1007/s11816-018-0499-2
  31. Shinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E. A., Bailey-Serres, J. & Weretilnyk, E. 2015. Responses to abiotic stresses. In Buchanan, B., Gruissem, W. & Jones, R. (Eds.) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologist, Rockville, MD, pp. 1051-1100.
  32. Song, J., Liu, Q., Hu, B. & Wu, W. 2016. Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul. 79:209-218. https://doi.org/10.1007/s10725-015-0126-y
  33. Van den Ende, W. & Valluru, R. 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60:9-18. https://doi.org/10.1093/jxb/ern297
  34. Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905. https://doi.org/10.1104/pp.110.155119
  35. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-233. https://doi.org/10.1016/j.envexpbot.2007.05.011
  36. Wang, K., Liu, Y., Tian, J., Huang, K., Shi, T., Dai, X. & Zhang, W. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNAsequencing. Front. Plant Sci. 8:1032. https://doi.org/10.3389/fpls.2017.01032
  37. Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci. 9:244-252. https://doi.org/10.1016/j.tplants.2004.03.006
  38. Wu, H. -C., Bulgakov, V. P. & Jinn, T. -L. 2018. Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Front. Plant Sci. 9:1612. https://doi.org/10.3389/fpls.2018.01612
  39. Xu, Y. & Hwang, B. 2018. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 19:70. https://doi.org/10.1186/s12864-018-4437-z
  40. Yang, K. A., Lim, C. J., Hong, J. K., Park, C. Y., Cheong, Y. H., Chung, W. S., Lee, K. O., Lee, S. Y., Cho, M. J. & Lim, C. O. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182. https://doi.org/10.1016/j.plantsci.2006.03.013