Acknowledgement
This works was supported by the Korean Institute of Planning and Evaluation for Technology, Agriculture, Forestry and Fisheries (IPET) through a Golden Seed Project (Project number, 213008-05-4-SB830), funded by the Ministry of Oceans and Fisheries (MOF) and a grant (R2021013) from the National Institute of Fisheries Science, Republic of Korea.
References
- Avila, M., Santelices, B. & McLachlan, J. 1986. Photoperiod and temperature regulation of the life history of Porphyra columbina (Rhodophyta, Bangilaes) from central Chile. Can. J. Bot. 64:1867-1872. https://doi.org/10.1139/b86-247
- Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
- Chan, C. X., Blouin, N. A., Zhuang, Y., Zauner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Muller, K., Stiller, J. W., Brawley, S. H. & Bhattacharya, D. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J. Phycol. 48:1328-1342. https://doi.org/10.1111/j.1529-8817.2012.01229.x
- Chen, P., Jung, N. U., Giarola, V. & Bartels, D. 2020. The dynamic responses of cell walls in resurrection plants during dehydration and rehydration. Front. Plant Sci. 10:1698. https://doi.org/10.3389/fpls.2019.01698
- Chen, S. & Li, H. 2017. Heat stress regulates the expression of genes at transcriptional and post-transcriptional levels, revealed by RNA-seq in Brachypodium distachyon. Front. Plant Sci. 7:2067.
- Choi, J. Y., Seo, Y. S., Kim, S. J., Kim, W. T. & Shin, J. S. 2011. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep. 30:867-877. https://doi.org/10.1007/s00299-010-0989-3
- Choi, S., Hwang, M. S., Im, S., Kim, N., Jeong, W. -J., Park, E.-J., Gong, Y. -G. & Choi, D. -W. 2013. Transcriptome sequencing and comparative analysis of the gametophyte of Pyropia tenera under normal and high-temperature condition. J. Appl. Phycol. 25:1237-1246. https://doi.org/10.1007/s10811-012-9921-2
- Dai, Y. L., Kim, G. H., Kang, M. C. & Jeon, Y. J. 2020. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model. Algae 35:189-200. https://doi.org/10.4490/algae.2020.35.5.14
- Eklof, J. M. & Brumer, H. 2010. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 153:456-466. https://doi.org/10.1104/pp.110.156844
- Ha, Y. I., Lim, J. M., Ko, S. -M., Liu, J. R. & Choi, D. -W. 2007. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance. Gene 386:115-122. https://doi.org/10.1016/j.gene.2006.08.026
- Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121. https://doi.org/10.4490/algae.2020.35.5.15
- Hwang, M. -S., Chung, I. -K. & Oh, Y. -S. 1997. Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12:207-213.
- Im, S., Choi, S., Hwang, M. S., Park, E. -J., Jeong, W. -J. & Choi, D. -W. 2015. De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J. Appl. Phycol. 27:1343-1353. https://doi.org/10.1007/s10811-014-0406-3
- Im, S., Lee, H. -N., Jung, H. S., Yang, S., Park, E. -J., Hwang, M. S., Jeong, W. -J. & Choi, D. -W. 2017. Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar. Biotechnol. 19:232-245. https://doi.org/10.1007/s10126-017-9744-x
- Kim, M., Wi, J., Lee, J., Cho, W. -B., Park, E. -J., Hwang, M. -S., Choi, S. -J., Jeong, W. -J., Kim, G. H. & Choi, D. -W. 2021. Development of genomic simple sequence repeat (SSR) markers of Pyropia yezoensis (Bangiales, Rhodophyta) and evaluation of genetic diversity of Korean cultivars. J. Appl. Phycol. Advanced online publication. https://doi.org/10.1007/s10811-021-05236-7.
- Le Gall, H., Philippe, F., Domon, J. -M., Gillet, F., Pelloux, J. & Rayon, C. 2015. Call wall metabolism in response to abiotic stress. Plants 4:112-166. https://doi.org/10.3390/plants4010112
- Livingston, D. P., Hincha, D. K. & Heyer, A. G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66:2007-2023. https://doi.org/10.1007/s00018-009-0002-x
- Lu, Y. & Xu, J. 2015. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 20:273-282. https://doi.org/10.1016/j.tplants.2015.01.006
- Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H. & Yan, X. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE 9:e94354. https://doi.org/10.1371/journal.pone.0094354
- McLachlan, J. 1973. Growth media-marine. In Stein, J. R. (Ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, pp. 25-51.
- Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
- Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
- Moore, J. P., Vicre-Gibouin, M., Farrant, J. M. & Driouich, A. 2008. Adaptations of higher plant cell walls to water loss: drought vs. desiccation. Physiol. Plant. 134:237-245. https://doi.org/10.1111/j.1399-3054.2008.01134.x
- Na, Y., Lee, H. -N., Wi, J., Jeong, W. -J. & Choi, D. -W. 2018. PtDRG1, a desiccation response gene from Pyropia tenera (Rhodophyta), exhibits chaperone function and enhances abiotic stress tolerance. Mar. Biotechnol. 20:584-593. https://doi.org/10.1007/s10126-018-9828-2
- Popper, Z. A., Ralet, M. -C. & Domozych, D. S. 2014. Plant and algal cell walls: diversity and functionality. Ann. Bot. 114:1043-1048. https://doi.org/10.1093/aob/mcu214
- Rienth, M., Torregrosa, L., Luchaire, N., Chatbanyong, R., Lecourieux, D., Kelly, M. T. & Romieu, C. 2013. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol. 14:108. https://doi.org/10.1186/1471-2229-14-108
- Rodriguez, M. C. S., Edsgard, D., Hussain, S. S., Alquezar, D., Rasmussen, M., Gilbert, T., Nielsen, B. H., Bartels, D. & Mundy, J. 2010. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. Plant J. 63:212-228. https://doi.org/10.1111/j.1365-313X.2010.04243.x
- Sasidharan, R., Voesenek, L. A. C. J. & Pierik, R. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit. Rev. Plant Sci. 30:548-562. https://doi.org/10.1080/07352689.2011.615706
- Senechal, F., Wattier, C., Rusterucci, C. & Pelloux, J. 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65:5125-5160. https://doi.org/10.1093/jxb/eru272
- Shin, Y. J., Min, S. R., Kang, D. Y., Lim, J. -M., Park, E. -J., Hwang, M. S., Choi, D. -W., Ahn, J. -W., Park, Y. -I. & Jeong, W. -J. 2018. Characterization of high temperature-tolerant strains of Pyropia yezoensis. Plant Biotechnol. Rep. 12:365-373. https://doi.org/10.1007/s11816-018-0499-2
- Shinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E. A., Bailey-Serres, J. & Weretilnyk, E. 2015. Responses to abiotic stresses. In Buchanan, B., Gruissem, W. & Jones, R. (Eds.) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologist, Rockville, MD, pp. 1051-1100.
- Song, J., Liu, Q., Hu, B. & Wu, W. 2016. Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul. 79:209-218. https://doi.org/10.1007/s10725-015-0126-y
- Van den Ende, W. & Valluru, R. 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60:9-18. https://doi.org/10.1093/jxb/ern297
- Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiol. 153:895-905. https://doi.org/10.1104/pp.110.155119
- Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-233. https://doi.org/10.1016/j.envexpbot.2007.05.011
- Wang, K., Liu, Y., Tian, J., Huang, K., Shi, T., Dai, X. & Zhang, W. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNAsequencing. Front. Plant Sci. 8:1032. https://doi.org/10.3389/fpls.2017.01032
- Wang, W., Vinocur, B., Shoseyov, O. & Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci. 9:244-252. https://doi.org/10.1016/j.tplants.2004.03.006
- Wu, H. -C., Bulgakov, V. P. & Jinn, T. -L. 2018. Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Front. Plant Sci. 9:1612. https://doi.org/10.3389/fpls.2018.01612
- Xu, Y. & Hwang, B. 2018. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass. BMC Genomics 19:70. https://doi.org/10.1186/s12864-018-4437-z
- Yang, K. A., Lim, C. J., Hong, J. K., Park, C. Y., Cheong, Y. H., Chung, W. S., Lee, K. O., Lee, S. Y., Cho, M. J. & Lim, C. O. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182. https://doi.org/10.1016/j.plantsci.2006.03.013