DOI QR코드

DOI QR Code

The Possible Signs of Hydrogen and Helium Accretion from Interstellar Medium on the Atmospheres of F-K Giants in the Local Region of the Galaxy

  • 투고 : 2021.06.13
  • 심사 : 2021.08.24
  • 발행 : 2021.09.14

초록

The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.

키워드

참고문헌

  1. Asplund M, Amarsi AM, Grevesse N, The chemical make-up of the Sun: a 2020 vision, Astron. Astrophys. in press (2021). https://arxiv.org/pdf/2105.01661
  2. Bohm-Vitense E, The puzzle of the metallic line stars, Publ. Astron. Soc. Pac. 118, 419-435 (2006). https://doi.org/10.1086/499385
  3. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547-650 (1957). https://doi.org/10.1103/RevModPhys.29.547
  4. Castelli F, Kurucz R, New grids of ATLAS9 model atmospheres, in IAU Symposium 210, Uppsala, Sweden, 17-21 Jun 2002.
  5. Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, et al., Origin of the heaviest elements: the rapid neutron-capture process, Rev. Mod. Phys. 93, 015002 (2021). https://doi.org/10.1103/RevModPhys.93.015002
  6. Cowley CR, An examination of the planetesimal impact hypothesis of the formation of CP stars, Astrophys. Space Sci. 51, 349-362 (1977). https://doi.org/10.1007/BF00644158
  7. Cowley CR, Bord DJ, The CP stars, an overview: then and now, IAU Symp. 224, 265-281 (2004). https://doi.org/10.1017/S174392130400465X
  8. Drobyshevski EM, Peculiar A-stars and planetary systems, Astrophys. Space Sci. 35, 403-408 (1975). https://doi.org/10.1007/BF00637006
  9. Erspamer D, North P, Automated spectroscopic abundances of A and F-type stars using echelle spectrographs. II. Abundances of 140 A-F stars from ELODIE, Astron. Astrophys. 398, 1121-1135 (2003). https://doi.org/10.1051/0004-6361:20021711
  10. Fowler WA, Burbidge EM, Burbidge GR, Hoyle F, The synthesis and destruction of elements in peculiar stars of types A and B, Astrophys. J. 142, 423-450 (1965). https://doi.org/10.1086/148309
  11. Greenstein JL, Analysis of the metallic-line stars. II. Astrophys. J. 109, 121-138 (1949). https://doi.org/10.1086/145112
  12. Grevesse N, Asplund M, Sauval AJ, Scott P, The chemical composition of the Sun, Astrophys. Space Sci. 328, 179-183 (2010). https://doi.org/10.1007/s10509-010-0288-z
  13. Havnes O, Magnetic stars as generators of cosmic rays, Astron. Astrophys. 13, 52-57 (1971).
  14. Havnes O, Conti PS, Magnetic accretion processes in peculiar A stars, Astron. Astrophys. 14, 1-11 (1971).
  15. Jeong Y, Yushchenko A, Gopka V, Yushchenko V, Rittipruk P, et al., The barium star HD204075: iron abundance and the absence of evidence for accretion, J. Astron. Space Sci. 36, 105-113 (2019). https://doi.org/10.5140/JASS.2019.36.3.105
  16. Jeong Y, Yushchenko AV, Doikov DN, Gopka VF, Yushchenko VO, Chemical composition of RR Lyn - an eclipsing binary system with Am and λ Boo type components, J. Astron. Space Sci. 34, 75-82 (2017). https://doi.org/10.5140/JASS.2017.34.2.75
  17. Kang YW, Yushchenko A, Hong K, Kim S, Yushchenko V, Chemical composition of the components of eclipsing binary star ZZ Bootis, Astron. J. 144, 35 (2012). https://doi.org/10.1088/0004-6256/144/2/35
  18. Kang YW, Yushchenko AV, Hong K, Guinan EF, Gopka VF, Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei, Astron. J. 145, 167 (2013). https://doi.org/10.1088/0004-6256/145/6/167
  19. Kim C, Yushchenko AV, Kim SL, Jeon YB, Kim CH, Chemical composition and photometry of BE Lyncis, Publ. Astron. Soc. Pac. 124, 401-410 (2012). https://doi.org/10.1086/665943
  20. Luck RE, Abundances in the local region. I. G and K giants, Astron. J. 150, 88 (2015). https://doi.org/10.1088/0004-6256/150/3/88
  21. Michaud G, Diffusion processes in peculiar A stars, Astrophys. J. 160, 641 (1970). https://doi.org/10.1086/150459
  22. Neiner C, Wade GA, Sikora J, Discovery of a magnetic field in the δ Scuti F2m star ρ Pup, Mon. Not. R. Astron. Soc. Lett. 468, L46-L49 (2016). https://doi.org/10.1093/mnrasl/slx023
  23. Niemczura E, Morel T, Aerts C, Abundance analysis of prime B-type targets for steroseismology. II. B6-B9.5 stars in the field of view of the CoRoT satellite, Astron. Astrophys. 506, 213-233 (2009). https://doi.org/10.1051/0004-6361/200911931
  24. North P, The rotation of AP stars, Astron. Astrophys. 141, 328-340 (1984).
  25. Proffitt CR, Michaud G, Abundance anomalies in A and B stars and the accretion of nuclear-processed material from supernovae and evolved giants. Astrophys. J. 345, 998-1007 (1989). https://doi.org/10.1086/167969
  26. Tanaka SJ, Chiaki G, Tominaga N, Susa H, Blocking metal accretion onto population III stars by stellar wind, Astrophys. J. 844, 137 (2017). https://doi.org/10.3847/1538-4357/aa7e2c
  27. Venn KA, Lambert DL, The chemical composition of three lambda Bootis stars, Astrophys. J. 363, 234-244 (1990). https://doi.org/10.1086/169334
  28. Venn KA, Lambert DL, Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars, Astrophys. J. 677, 572 (2008). https://doi.org/10.1086/529069
  29. Wallerstein G, Iben Jr. I, Parker P, Boesgaard AN, Hale GM, et al., Synthesis of the elements in stars: forty years of progress, Rev. Mod. Phys. 69, 995-1084 (1997) https://doi.org/10.1103/RevModPhys.69.995
  30. Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of ρ puppis and the signs of accretion in the atmospheres of B-F-type stars, Astron. J. 149, 59 (2015). https://doi.org/10.1088/0004-6256/149/2/59
  31. Yushchenko AV, Gopka VF, Shavrina AV, Yushchenko VA, Vasileva SV, et al., Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23-red supergiant in the small magellanic cloud due to interstellar gas accretion, Kinemat. Phys. Celest. Bodies. 33, 199-216 (2017b). https://doi.org/10.3103/S0884591317050075
  32. Yushchenko AV, Jeong Y, Gopka VF, Vasileva SV, Andrievsky SM, et al., Chemical composition of RM_1-390-large magellanic cloud red supergiant, J. Astron. Space Sci. 34, 199-205 (2017a). https://doi.org/10.5140/JASS.2017.34.3.199
  33. Yushchenko AV, Kim C, Jeong Y, Dmytry DN, Volodymyr YA, et al., The chemical composition of V1719 Cyg: δ Scuti type star without the accretion of interstellar matter, J. Astron. Space Sci. 37, 157-163 (2020). https://doi.org/10.5140/JASS.2020.37.3.157