Acknowledgement
Authors are wishing to acknowledge the financial support from the Science Research Fund of Nanjing Institute of Technology (No. CKJB201310).
References
- Bayesteh, H. and Ghasempour, T. (2019), "Role of the location and size of soluble particles in the mechanical behavior of collapsible granular soil: A DEM simulation", Comput. Part. Mech., 6, 327-341. https://doi.org/10.1007/s40571-018-00216-x.
- Borja, R.I. (2004), "Computational modeling of deformation bands in granular media. II. numerical simulations", Comput. Meth. Appl. M., 193(27-29), 2699-2718. https://doi.org/10.1016/j.cma.2003.09.018.
- Castelli, M., Allodi, A. and Scavia, C. (2009), "A numerical method for the study of shear band propagation in soft rocks", Int. J. Numer. Anal. Met., 33, 1561-1587. https://doi.org/10.1002/nag.778.
- Desrues, J., Chambon, R., Mokni, M., and Mazerolle, F. (1996), "Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography", Geotechnique, 46(3), 529-546. http://doi.org/10.1680/geot.1996.46.3.529.
- Dong, Q.Q., Xiong, C.W, Ma, C.L. and Wei, H.J. (2019), "Experimental study on cracking behavior of intermittent double S-shaped fissures under uniaxial compression", KSCE J. Civ. Eng., 23(6), 2483-2494. https://doi.org/10.1007/s12205-019-1858-4.
- Ebrahimian, B., Noorzad, A. and Alsaleh, M.I. (2018), "Modeling interface shear behavior of granular materials using micro-polar continuum approach", Continuum Mech. Therm., 30, 95-126. https://doi.org/10.1007/s00161-017-0588-4.
- Huang, S.B., Yao, N., Ye, Y.C. and Cui, X.Z. (2019), "Strength and failure characteristics of rocklike material containing a largeopening crack under uniaxial compression: Experimental and numerical studies", Int. J. Geomech., 19(8), 04019098. https://doi.org.10.1061/(ASCE)GM.1943-5622.0001477.
- Huang, Y.H., Yang, S.Q., Tian, W.L., Zeng, W. and Yu, L.Y. (2016), "An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression", Acta Mech. Sin., 32(3), 442-455. https://doi.org/10.1007/s10409-015-0489-3.
- Huang, W. X., Huang, L. Y., Sheng, D.C. and Sloan, S. W. (2015), "DEM modelling of shear localization in a plane Couette shear test of granular materials", Acta Geotech., 10, 389-397. https://doi.org/10.1007/s11440-014-0348-6.
- Jiang, M. J., Liu, J. and Shen, Z.F. (2018), "Investigating the shear band of methane hydrate-bearing sediments by FEM with an elasto-plastic constitute model", B. Eng. Geol. Environ., 77, 1015-1025. https://doi.org/10.1007/s10064-017-1109-1.
- Kozicki, J. and Tejchman, J. (2018), "Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition", Granul. Matter, 20, 48. https://doi.org/10.1007/s10035-018-0815-0.
- Muhlhaus, H.B. and Alfantis, E.C. (1991), "A variational principle for gradient plasticity", Int. J. Solids Struct., 28(7), 845-857. https://doi.org/10.1016/0020-7683(91)90004-Y.
- Schneider-Muntau, B., Chen, C. and Bathaeian, S.M.I. (2017), "Simulation of shear bands with Soft PARticle Code (SPARC) and FE", Int. J. Geomath., 8, 135-151. https://doi-org/10.1007/s13137-016-0091-2.
- Vangla, P. and Latha, G.M. (2015), "Influence of particle size on the friction and interfacial shear strength of sands of similar morphology", Int. J. Geosynth. Ground Eng., 1, 6. https://doi-org/10.1007/s40891-014-0008-9.
- Wanatowski, D. and Chu, J. (2006), "Stress-strain behavior of a granular fill measured by a new plane strain apparatus", Geotech. Test. J., 29(2), 1-9. https://doi.org/10.1520/GTJ12621.
- Wang, B.J., Xiao, H.T. and Yue, Z.Q. (2012), "Interaction between two rectangular cracks in a transversely isotropic medium of semi-infinite extent", Rock Soil Mech., 33(8), 2527-2535. https://doi.org/10.16285/j.rsm.2012.08.001.
- Wang, M., Cao, P., Wan, W., Zhao, Y. L., Liu, J. and Liu, J. S. (2017), "Crack growth analysis for rock-like materials with ordered multiple pre-cracks under biaxial compression", J. Cent. South Univ., 24, 866-874. https://doi.org/10.1007/s11771-017-3489-6.
- Wang, X., Yuan, W., Yan, Y.T. and Zhang, X. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.
- Watanabe, Y., Lenoir, N., Otani, J. and Nakai, T. (2012), "Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data", Soils Found., 52(2), 312-320. https://doi.org/10.1016/j.sandf.2012.02.008.
- Xu, J. and Li, Z.X. (2017), "Damage evolution and crack propagation in rocks with dual elliptic flaws in compression", Acta Mech. Solida Sin., 30, 573-582. https://doi.org/10.1016/j.camss.2017.11.001.
- Yang, S.Q., Jing, H.W. and Xu, T. (2014), "Mechanical behavior and failure analysis of brittle sandstone specimen containing combined flaws under uniaxial compression", J. Cent. South Univ., 21, 2059-2073. https://doi.org/10.1007/s11771-014-2155-5.