DOI QR코드

DOI QR Code

An analytical model for radial consolidation prediction under cyclic loading

  • Paul, Monideepa (Department of Civil Engineering, Heritage Institute of Technology) ;
  • Bakshi, Kaustav (Department of Civil Engineering, Indian Institute of Technology Indore) ;
  • Sahu, Ramendu Bikas (Department of Civil Engineering, Jadavpur University)
  • Received : 2020.04.15
  • Accepted : 2021.08.04
  • Published : 2021.08.25

Abstract

The excess pore pressure increases under undrained cyclic loading which cause decrease in effective stress followed by possible failure in the soft soil. With the inclusion of vertical drains radial drainage allows quick dissipation of excess pressure during cyclic loading and thereby failure of foundation soil may be avoided. The present study aims for analytical closed-form investigation on soft cohesive deposit under radial flow consolidation through vertical drains with no smear when subjected to long-term rapid cyclic loading. The mathematical formulation of pore pressure including degree of consolidation under cyclic loading is developed by using Green's functions technique. Results obtained from the proposed formulation are in good agreement when compared with published field data which confirms its correctness to predict consolidation under cyclic loading. Once the proposed model is validated, it is applied to investigate the effect of vertical drains on variation of pore pressure ratio with number of loading cycles. The findings indicate that the pore water pressure generates slowly at the outermost boundaries of the vertical drains for initial number of loading cycles. The magnitude of pore water pressure accumulation increases and then dissipates for higher number of loading cycles. The variation of degree of consolidation for different frequencies of a unit cell of a prefabricated vertical drain is also furnished.

Keywords

References

  1. Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington D.C., U.S.A.
  2. Amiri, A., Toufigh, M.M., Sadeghi Janat Abadi, S. and Toufigh, V. (2018), "Comparison of radial consolidation behavior of clay under three types of cyclic loading", Civ. Eng. Infrastruct. J., 51(1), 17-33. https://doi.org/10.7508/CEIJ.2018.01.002.
  3. Ansal, A.M. and Erken, A. (1989), "Undrained behavior of clay under cyclic shear stresses", J. Geotech. Eng., 115(7), 968-983. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:7(968).
  4. Attya, A., Indraratna, B. and Rujikiatkamjorn, C. (2007), "Effectiveness of vertical drains in dissipating excess pore pressures induced by cyclic loads clays", Proceedings of the 16th Southeast Asian Geotechnical Conference, Selangor, Malaysia, May.
  5. Bai, B. and Shi, X. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. https://doi.org/10.12989/gae.2017.12.4.707.
  6. Carslaw, H.S. and Jaeger, J.C. (1959), Conduction of Heat in Solids, Oxford University Press, London, U.K.
  7. Conte, E. and Troncone, A. (2006), "One dimensional consolidation under general time-dependent loading", Can. Geotech. J., 43, 1107-1116. https://doi.org/10.1139/t06-064.
  8. Conte, E. and Troncone, A. (2007), "Nonlinear consolidation of thin layers subjected to time dependent loading", Can. Geotech. J., 44, 717-725. https://doi.org/10.1139/t07-015.
  9. Conte, E. and Tronecone, A. (2009), "Radial consolidation with vertical drains and general time-dependent loading", Can. Geotech. J., 46, 25-36. https://doi.org/10.1139/T08-101.
  10. Das, B. (1985), Advanced Soil Mechanics, McGraw-Hill, New York, U.S.A.
  11. Davis, E.H. and Raymond, G.P. (1965), "A non linear theory of consolidation", Geotechnique, 15(2), 161-173. https://doi.org/10.1680/geot.1965.15.2.161.
  12. De Alba, P., Seed, H.B. and Chan, C.K. (1976), "Sand liquefaction in large scale simple shear tests", J. Geotech. Div., 102, 909-928. https://doi.org/10.1080/19386362.2019.1701219.
  13. Deng, Y.B., Xie, K.H., Lu, M.M., Tao, H.B. and Lu, G.B. (2013), "Consolidation by prefabricated vertical drains considering the time dependent well resistance", Geotext. Geomembranes, 36(1), 20-26. https://doi.org/10.1016/j.geotexmem.2012.10.003.
  14. Havil, J. (2003), Gamma Exploring Euler's Constant, Princeton University Press, Princeton, New Jersey, U.S.A.
  15. Hsu, T.W. and Liu, H.Y. (2013), "Consolidation for radial drainage under time-dependent loading", J. Geotech. Geoenviron. Eng., 139(12), 2096-2103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000942.
  16. Hyodo, M., Yasuhara, K. and Murata, H. (1988), "Earthquake induced settlements in clays", Proceedings of 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, August.
  17. Indraratna, B., Attya, A. and Rujikiatkamjorn, C. (2009), "Experimental investigation on effectiveness of a vertical drain under cyclic loads", J. Geotech. Geoenviron. Eng., 135(6), 835-839. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000006.
  18. Indraratna, B., Kan, M.E., Potts, D., Rujikiakatamjorn, C. and Sloan, S.W. (2016), "Analytical solution and numerical simulation of vacuum consolidation by vertical drains beneath circular embankments", Comput. Geotech., 80, 83-96. https://doi.org/10.1016/j.compgeo.2016.06.008.
  19. Indraratna, B. and Redana, I.W. (2000), "Numerical modeling of vertical drains with smear and well resistance installed in soft clay", Can. Geotech. J., 37(1), 132-145. https://doi.org/10.1139/t99-115.
  20. Indraratna, B.N., Rujikiatkamjorn, C., Ewers, B. and Adams, M. (2010), "Class A prediction of the behavior of soft estuarine soil foundation stabilised by short vertical drains beneath a rail track", J. Geotech. Geoenviron. Eng., 136(5), 686-696. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000270.
  21. Kelly, R. (2014), "Assessment of smear parameters for use in wick drain design", Proc. Inst. Civ. Eng. Ground Improv., 167(3), 186-191. https://doi.org/10.1680/jgrim.15.00034.
  22. Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A.
  23. Lancellotta, R. (1995), Geotechnical Engineering, Balkema, Rotterdam, The Netherlands.
  24. Lekha, K.R., Krishnaswamy, N.R. and Basak, P. (1998), "Consolidation of clay by sand drains under time-dependent loading", J. Geotech. Geoenviron. Eng., 124(1), 91-94. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(91).
  25. Leo, C.J. (2004), "Equal strain consolidation by the vertical sand drains", J. Geotech. Geoenviron. Eng., 130(3), 316-327. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(316).
  26. Li, C., Huang, J., Wu, L., Lu, X. and Xia, C. (2018), "Approximate analytical solutions for one-dimensional consolidation of a clay layer with variable compressibility and permeability under a ramp loading", Int. J. Geomech., 18(11), 06018032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001296.
  27. Long, R.P. and Covo, A. (1994), "Equivalent diameter of vertical drains with an oblong cross section", J. Geotech. Eng., 120(9), 1625-1630. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1625).
  28. Lu, M., Xie, K. and Wang, S. (2011), "Consolidation of vertical drain with depth-varying stress induced by multi-stage loading", Comput. Geotech., 38, 1096-1101. https://doi.org/10.1016/j.compgeo.2011.06.007.
  29. Matsui, T., Ohara, H. and Ito, T. (1980), "Cyclic stress-strain history and shear characteristics of clay", J. Geotech. Eng., 106 (GT10), 1101-1120. https://doi.org/10.1061/AJGEB6.0001043.
  30. Ma, B.H, Hu, Z.Y., Li, Z, Cai, K., Zhao, M.H., He, C.B. and Huang X.C. (2020), "Finite difference method for the onedimensional non-linear consolidation of soft ground under uniform load", Front. Earth Sci., 8, 111. https://doi.org/10.3389/feart.2020.00111.
  31. Ni, J. (2012), "Application of geosynthetic vertical drains under cyclic loads in stabilizing tracks", Ph.D. Dissertation, University of Wollongong, Wollongong, Australia.
  32. Ni, J., Indraratna, B., Geng, X.Y., Carter, J.P. and Chen, Y.L. (2014), "Model of soft soils under cyclic loading", Int. J. Geomech., 15(4), 04014067. http://doi.org/10.1061/ (ASCE) GM.1943- 5622.0000411.
  33. Ohara, S. and Matsuda, H. (1988), "Study on the settlement of saturated clay layer induced by cyclic shear", Soils Found., 28(3), 103-113. https://doi.org/10.3208/sandf1972.28.3_103.
  34. Paul, M. and Sahu, R.B. (2012). "One dimensional consolidation under cyclic loading", Int. J. Geotech. Eng., 6, 395-401. https://doi.org/10.3328/IJGE.2012.06.03.395-402.
  35. Paul, M., Sahu, R.B. and Banerjee, G. (2015), "Undrained pore pressure prediction in clayey soil under cyclic loading", Int. J. Geomech., 15(5), 04014082(11). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000431.
  36. Paul, M., Sahu, R.B. and Banerjee, G. (2019), "A generalized consolidation model under cyclic loading", Int. J. Geotech. Eng., 14(5) 497-513. https://doi.org/10.1080/19386362.2019.1701219.
  37. Prakasha, K.S. and Chandrasekaran, V.S. (2005), "Behavior of marine sand-clay mixtures under static and cyclic triaxial shear", J. Geotech. Geoenviron. Eng., 131(2), 213-222. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(213).
  38. Samang, L., Miura, N. and Sakai, A. (2005), "Long term measurement of traffic load induced settlement of pavement surface in saga airport highway, Japan", Journal Teknik Sipil, 12(4), 275-286. http://doi.org/10.5614%2Fjts.2005.12.4.5. https://doi.org/10.5614%2Fjts.2005.12.4.5
  39. Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Div. Proc. Amer. Soc. Civ. Eng., 97(SM9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  40. Smith, G.N. and Smith, I.G. (1998), Elements of Soil Mechanics, Blackwell, London, U.K.
  41. Tang, X.W. and Onitsuka, K. (2000), "Consolidation by vertical drains under time dependent loading", Int. J. Numer. Anal. Met. Geomech., 24(9), 739-751. https://doi.org/10.1002/1096-9853(20000810)24:9<739::AIDNAG94>3.0.CO;2-B.
  42. Van Eekelen, H.A.M. and Potts, D.M. (1978), "The behavior of drammen clay under cyclic loading", Geotechnique, 28(2), 173-196. https://doi.org/10.1680/geot.1978.28.2.173.
  43. Walker, R. and Indraratna, B, (2006), "Vertical drain consolidation with parabolic distribution of permeability in smear zones", J. Geotech. Geoenviron. Eng., 132(7), 937-941. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(937).
  44. Walker, R. and Indraratna, B. (2009), "Consolidation analysis of a stratified soil with vertical and horizontal drainage using the spectral method", Geotechnique, 59(5), 439-449. https://doi.org/10.1680/geot.2007.00019.
  45. Wilson, N. and Elgohary, M. (1974), "Consolidation of soils under cyclic loading", Can. Geotech. J., 11, 420-423. https://doi.org/10.1139/t74-042.
  46. Yasuhara, K., Sate, K., Zen, K., Yamazaki, H., Hyodo, M. and Yamamoto, T. (1995), "Settlement observation and its prediction of a breakwater at Tottori port", Proceedings of the International Symposium on Compression and Consolidation of Soft Clays Soils, Japan, January.
  47. Yazdani, H. and Toufigh, M.M. (2012), "Nonlinear consolidation of soft clays subjected to cyclic loading - Part I: theory." Geomech. Eng., 4(4), 229-241. https://doi.org/10.12989/gae.2012.4.4.229.
  48. Yoshikuni, H. and Nakanodo, H. (1974), "Consolidation of soils by vertical drain wells with finite permeability", Soils Found., 14, 35-46. https://doi.org/10.3208/sandf1972.14.2_35.
  49. Zhu, G.F. and Yin, J.H. (2001), "Consolidation of soil with vertical and horizontal drainage", Geotechnique, 51(4), 361-367. https://doi.org/10.1680/geot.2001.51.4.361.
  50. Zhang, Y., Wu, W., Mei, G. and Duan, L. (2019), "Threedimensional consolidation theory of vertical drain based on continuous drainage boundary", J. Civ. Eng. Manage., 25(2), 145-155. https://doi.org/10.3846/jcem.2019.8071.

Cited by

  1. Experimental Study on Stiffness Softening of Soil-Rock Mixture Backfill under Metro Train Cyclic Load vol.2021, 2021, https://doi.org/10.1155/2021/3024490