References
- Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington D.C., U.S.A.
- Amiri, A., Toufigh, M.M., Sadeghi Janat Abadi, S. and Toufigh, V. (2018), "Comparison of radial consolidation behavior of clay under three types of cyclic loading", Civ. Eng. Infrastruct. J., 51(1), 17-33. https://doi.org/10.7508/CEIJ.2018.01.002.
- Ansal, A.M. and Erken, A. (1989), "Undrained behavior of clay under cyclic shear stresses", J. Geotech. Eng., 115(7), 968-983. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:7(968).
- Attya, A., Indraratna, B. and Rujikiatkamjorn, C. (2007), "Effectiveness of vertical drains in dissipating excess pore pressures induced by cyclic loads clays", Proceedings of the 16th Southeast Asian Geotechnical Conference, Selangor, Malaysia, May.
- Bai, B. and Shi, X. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. https://doi.org/10.12989/gae.2017.12.4.707.
- Carslaw, H.S. and Jaeger, J.C. (1959), Conduction of Heat in Solids, Oxford University Press, London, U.K.
- Conte, E. and Troncone, A. (2006), "One dimensional consolidation under general time-dependent loading", Can. Geotech. J., 43, 1107-1116. https://doi.org/10.1139/t06-064.
- Conte, E. and Troncone, A. (2007), "Nonlinear consolidation of thin layers subjected to time dependent loading", Can. Geotech. J., 44, 717-725. https://doi.org/10.1139/t07-015.
- Conte, E. and Tronecone, A. (2009), "Radial consolidation with vertical drains and general time-dependent loading", Can. Geotech. J., 46, 25-36. https://doi.org/10.1139/T08-101.
- Das, B. (1985), Advanced Soil Mechanics, McGraw-Hill, New York, U.S.A.
- Davis, E.H. and Raymond, G.P. (1965), "A non linear theory of consolidation", Geotechnique, 15(2), 161-173. https://doi.org/10.1680/geot.1965.15.2.161.
- De Alba, P., Seed, H.B. and Chan, C.K. (1976), "Sand liquefaction in large scale simple shear tests", J. Geotech. Div., 102, 909-928. https://doi.org/10.1080/19386362.2019.1701219.
- Deng, Y.B., Xie, K.H., Lu, M.M., Tao, H.B. and Lu, G.B. (2013), "Consolidation by prefabricated vertical drains considering the time dependent well resistance", Geotext. Geomembranes, 36(1), 20-26. https://doi.org/10.1016/j.geotexmem.2012.10.003.
- Havil, J. (2003), Gamma Exploring Euler's Constant, Princeton University Press, Princeton, New Jersey, U.S.A.
- Hsu, T.W. and Liu, H.Y. (2013), "Consolidation for radial drainage under time-dependent loading", J. Geotech. Geoenviron. Eng., 139(12), 2096-2103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000942.
- Hyodo, M., Yasuhara, K. and Murata, H. (1988), "Earthquake induced settlements in clays", Proceedings of 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, August.
- Indraratna, B., Attya, A. and Rujikiatkamjorn, C. (2009), "Experimental investigation on effectiveness of a vertical drain under cyclic loads", J. Geotech. Geoenviron. Eng., 135(6), 835-839. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000006.
- Indraratna, B., Kan, M.E., Potts, D., Rujikiakatamjorn, C. and Sloan, S.W. (2016), "Analytical solution and numerical simulation of vacuum consolidation by vertical drains beneath circular embankments", Comput. Geotech., 80, 83-96. https://doi.org/10.1016/j.compgeo.2016.06.008.
- Indraratna, B. and Redana, I.W. (2000), "Numerical modeling of vertical drains with smear and well resistance installed in soft clay", Can. Geotech. J., 37(1), 132-145. https://doi.org/10.1139/t99-115.
- Indraratna, B.N., Rujikiatkamjorn, C., Ewers, B. and Adams, M. (2010), "Class A prediction of the behavior of soft estuarine soil foundation stabilised by short vertical drains beneath a rail track", J. Geotech. Geoenviron. Eng., 136(5), 686-696. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000270.
- Kelly, R. (2014), "Assessment of smear parameters for use in wick drain design", Proc. Inst. Civ. Eng. Ground Improv., 167(3), 186-191. https://doi.org/10.1680/jgrim.15.00034.
- Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John Wiley and Sons, Inc., New York, U.S.A.
- Lancellotta, R. (1995), Geotechnical Engineering, Balkema, Rotterdam, The Netherlands.
- Lekha, K.R., Krishnaswamy, N.R. and Basak, P. (1998), "Consolidation of clay by sand drains under time-dependent loading", J. Geotech. Geoenviron. Eng., 124(1), 91-94. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(91).
- Leo, C.J. (2004), "Equal strain consolidation by the vertical sand drains", J. Geotech. Geoenviron. Eng., 130(3), 316-327. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(316).
- Li, C., Huang, J., Wu, L., Lu, X. and Xia, C. (2018), "Approximate analytical solutions for one-dimensional consolidation of a clay layer with variable compressibility and permeability under a ramp loading", Int. J. Geomech., 18(11), 06018032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001296.
- Long, R.P. and Covo, A. (1994), "Equivalent diameter of vertical drains with an oblong cross section", J. Geotech. Eng., 120(9), 1625-1630. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1625).
- Lu, M., Xie, K. and Wang, S. (2011), "Consolidation of vertical drain with depth-varying stress induced by multi-stage loading", Comput. Geotech., 38, 1096-1101. https://doi.org/10.1016/j.compgeo.2011.06.007.
- Matsui, T., Ohara, H. and Ito, T. (1980), "Cyclic stress-strain history and shear characteristics of clay", J. Geotech. Eng., 106 (GT10), 1101-1120. https://doi.org/10.1061/AJGEB6.0001043.
- Ma, B.H, Hu, Z.Y., Li, Z, Cai, K., Zhao, M.H., He, C.B. and Huang X.C. (2020), "Finite difference method for the onedimensional non-linear consolidation of soft ground under uniform load", Front. Earth Sci., 8, 111. https://doi.org/10.3389/feart.2020.00111.
- Ni, J. (2012), "Application of geosynthetic vertical drains under cyclic loads in stabilizing tracks", Ph.D. Dissertation, University of Wollongong, Wollongong, Australia.
- Ni, J., Indraratna, B., Geng, X.Y., Carter, J.P. and Chen, Y.L. (2014), "Model of soft soils under cyclic loading", Int. J. Geomech., 15(4), 04014067. http://doi.org/10.1061/ (ASCE) GM.1943- 5622.0000411.
- Ohara, S. and Matsuda, H. (1988), "Study on the settlement of saturated clay layer induced by cyclic shear", Soils Found., 28(3), 103-113. https://doi.org/10.3208/sandf1972.28.3_103.
- Paul, M. and Sahu, R.B. (2012). "One dimensional consolidation under cyclic loading", Int. J. Geotech. Eng., 6, 395-401. https://doi.org/10.3328/IJGE.2012.06.03.395-402.
- Paul, M., Sahu, R.B. and Banerjee, G. (2015), "Undrained pore pressure prediction in clayey soil under cyclic loading", Int. J. Geomech., 15(5), 04014082(11). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000431.
- Paul, M., Sahu, R.B. and Banerjee, G. (2019), "A generalized consolidation model under cyclic loading", Int. J. Geotech. Eng., 14(5) 497-513. https://doi.org/10.1080/19386362.2019.1701219.
- Prakasha, K.S. and Chandrasekaran, V.S. (2005), "Behavior of marine sand-clay mixtures under static and cyclic triaxial shear", J. Geotech. Geoenviron. Eng., 131(2), 213-222. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(213).
- Samang, L., Miura, N. and Sakai, A. (2005), "Long term measurement of traffic load induced settlement of pavement surface in saga airport highway, Japan", Journal Teknik Sipil, 12(4), 275-286. http://doi.org/10.5614%2Fjts.2005.12.4.5. https://doi.org/10.5614%2Fjts.2005.12.4.5
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found. Div. Proc. Amer. Soc. Civ. Eng., 97(SM9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
- Smith, G.N. and Smith, I.G. (1998), Elements of Soil Mechanics, Blackwell, London, U.K.
- Tang, X.W. and Onitsuka, K. (2000), "Consolidation by vertical drains under time dependent loading", Int. J. Numer. Anal. Met. Geomech., 24(9), 739-751. https://doi.org/10.1002/1096-9853(20000810)24:9<739::AIDNAG94>3.0.CO;2-B.
- Van Eekelen, H.A.M. and Potts, D.M. (1978), "The behavior of drammen clay under cyclic loading", Geotechnique, 28(2), 173-196. https://doi.org/10.1680/geot.1978.28.2.173.
- Walker, R. and Indraratna, B, (2006), "Vertical drain consolidation with parabolic distribution of permeability in smear zones", J. Geotech. Geoenviron. Eng., 132(7), 937-941. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(937).
- Walker, R. and Indraratna, B. (2009), "Consolidation analysis of a stratified soil with vertical and horizontal drainage using the spectral method", Geotechnique, 59(5), 439-449. https://doi.org/10.1680/geot.2007.00019.
- Wilson, N. and Elgohary, M. (1974), "Consolidation of soils under cyclic loading", Can. Geotech. J., 11, 420-423. https://doi.org/10.1139/t74-042.
- Yasuhara, K., Sate, K., Zen, K., Yamazaki, H., Hyodo, M. and Yamamoto, T. (1995), "Settlement observation and its prediction of a breakwater at Tottori port", Proceedings of the International Symposium on Compression and Consolidation of Soft Clays Soils, Japan, January.
- Yazdani, H. and Toufigh, M.M. (2012), "Nonlinear consolidation of soft clays subjected to cyclic loading - Part I: theory." Geomech. Eng., 4(4), 229-241. https://doi.org/10.12989/gae.2012.4.4.229.
- Yoshikuni, H. and Nakanodo, H. (1974), "Consolidation of soils by vertical drain wells with finite permeability", Soils Found., 14, 35-46. https://doi.org/10.3208/sandf1972.14.2_35.
- Zhu, G.F. and Yin, J.H. (2001), "Consolidation of soil with vertical and horizontal drainage", Geotechnique, 51(4), 361-367. https://doi.org/10.1680/geot.2001.51.4.361.
- Zhang, Y., Wu, W., Mei, G. and Duan, L. (2019), "Threedimensional consolidation theory of vertical drain based on continuous drainage boundary", J. Civ. Eng. Manage., 25(2), 145-155. https://doi.org/10.3846/jcem.2019.8071.
Cited by
- Experimental Study on Stiffness Softening of Soil-Rock Mixture Backfill under Metro Train Cyclic Load vol.2021, 2021, https://doi.org/10.1155/2021/3024490