DOI QR코드

DOI QR Code

Arching effect in sand piles under base deflection using geometrically non-linear isogeometric analysis

  • Nguyen, Tan (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Tran, Loc V. (Faculty of Civil Engineering, Ton Duc Thang University)
  • 투고 : 2020.12.30
  • 심사 : 2021.08.05
  • 발행 : 2021.08.25

초록

Arching effect is a universal phenomenon of the load transfer mechanism which is visually observed in the heaps of granular material. In this study, we adopt geometrically non-linear isogeometric finite element analysis to revisit the theoretical concept of the arching effect in the granular sand piles under base deflection with an assumption of elastic continuum theory. Through two studies of the planar and conical sand heaps, this work expects to supply the numerical results for double-checking some simple benchmarks before extending to the complicated problems. Herein, the reliability and accuracy of the present model are validated by checking the weight balance condition and comparing with some available literature. The numerical results demonstrate that the stress dip accompanying a significant shear stress mobilization at the base is formed immediately once the base deflection occurs. Furthermore, the trajectories of principal stresses are plotted to visually manifest the force propagation in the sand piles which enables us to explain the formation and shape of the arching effect.

키워드

참고문헌

  1. Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  2. Ai, J., Chen, J.F. and Ooi, J.Y. (2013), "Finite element simulation of the pressure dip in sandpiles", Int. J. Solid Struct., 50(6), 981-995. https://doi.org/10.1016/j.ijsolstr.2012.12.006.
  3. Ai, J., Chen, J.F., Rotter, J.M. and Ooi, J.Y. (2010), "Numerical and experimental studies of the base pressures beneath stockpiles", Granul. Matter, 13(2), 133-141. https://doi.org/10.1007/s10035-010-0215-6.
  4. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
  5. Alnujaie, A., Akbas, S.D., Eltaher, M.A., Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  6. Angelillo, M., Babilio, E., Fortunato, A., Lippiello, M. and Montanino, A. (2016), "Analytic solutions for the stress field in static sandpiles", Mech. Mater., 95, 192-203. https://doi.org/10.1016/j.mechmat.2016.01.015.
  7. Atman, A.P., Brunet, P., Geng, J., Reydellet, G., Claudin, P., Behringer, R.P. and Clement, E. (2005), "From the stress response function (back) to the sand pile "dip"", Eur. Phys. J. E Soft Matter, 17(1), 93-100. https://doi.org/10.1140/epje/i2005-10002-2.
  8. Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545.
  9. Bi, G. (2017), "Generalized stress field in granular soils heap with Rayleigh-Ritz method", J. Rock Mech. Geotech. Eng., 9(1), 135-149. https://doi.org/10.1016/j.jrmge.2016.07.007.
  10. Booker, J.R. (1969), "Applications of the theory of plasticity to cohesive-frictional soils", Ph.D. Dissertation, University of Sydney, Sydney, Australia.
  11. De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Meth. Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121.
  12. Eltaher, M.A., Alsulami and R. and Wagih, A. (2021), "On the evolution of energy dissipation in dispersed composite laminates under out-of-plane loading", Compos. Part B Eng., 216, 108864. https://doi.org/10.1016/j.compositesb.2021.108864.
  13. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
  14. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
  15. Girijavallabhan, C.V. and Reese, L.C. (1968), "Finite-element method for problems in soil mechanics", J. Soil Mech. Found. Div., 94(2), 473-496. https://doi.org/10.1061/JSFEAQ.0001107.
  16. Handy, R.L. (1985), "The arch in soil arching", J. Geotech. Eng., 111(3), 302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).
  17. Horabik, J., Parafiniuk, P. and Molenda, M. (2017), "Discrete element modelling study of force distribution in a 3D pile of spherical particles", Powder Technol., 312, 194-203. https://doi.org/10.1016/j.powtec.2017.02.048.
  18. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
  19. Jaouhar, E.M., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Eng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.
  20. Jeong, H.Y. and Moore, I. (2010), "Calculations for central stress minimum under sand piles using continuum analysis", ZAMM-J. Appl. Math. Mech., 90(1), 65-71. https://doi.org/10.1002/zamm.200800025.
  21. Lee, I.M., Kim, D.H., Kim, K.Y. and Lee, S.W. (2016), "Earth pressure on a vertical shaft considering the arching effect in c-ϕ soil", Geomech. Eng., 11(6), 879-896. https://doi.org/10.12989/gae.2016.11.6.879.
  22. Lee, I.K. and Herington, J.R. (1971), "Stresses beneath granular embankments", Proceedings of the 1st Australia-NewZealand Conference on Geomechanics, Melbourne, Australia.
  23. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  24. Li, W., Nguyen-Thanh, N. and Zhou, K. (2018), "Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach", Comput. Meth. Appl. Mech. Eng. Comput., 336, 111-134. https://doi.org/10.1016/j.cma.2018.02.018.
  25. Liu, Y.Y., Yeung, A.T., Zhang, D.L. and Li, Y.R. (2017), "Experimental study on the effect of particle shape on stress dip in granular piles", Powder Technol., 319, 415-425. https://doi.org/10.1016/j.powtec.2017.07.021.
  26. Marais, G.V.R. (1969), "Stresses in wedges of cohesionless materials formed by free discharge at the Apex", J. Eng. Industry, 91(2), 345-352. https://doi.org/10.1115/1.3591571
  27. Matuttis, H.-G. (1998), "Simulation of the pressure distribution under a two-dimensional heap of polygonal particles", Granul. Matter, 1(2), 83-91. https://doi.org/10.1007/s100350050013.
  28. Matuttis, H.G. and Schinner, A. (1999), "Influence of the geometry on the pressure distribution of granular heaps", Granul. Matter, 1(4), 195-201. https://doi.org/10.1007/s100350050025.
  29. McBride, W. (2006), "Base pressure measurements under a scale model stockpile", Particul. Sci. Technol., 24(1), 59-70. https://doi.org/10.1080/02726350500403264.
  30. Meena, N.K., Nimbalkar, S., Fatahi, B. and Yang, G. (2020), "Effects of soil arching on behavior of pile-supported railway embankment: 2D FEM approach", Comput. Geotech., 123, 103601. https://doi.org/10.1016/j.compgeo.2020.103601.
  31. Michalowski, R.L. and Park, N. (2004), "Admissible stress fields and arching in piles of sand", Geotechnique, 54(8), 529-538. https://doi.org/10.1680/geot.2004.54.8.529.
  32. Modaressi, A., Boufellouh, S. and Evesque, P. (1999), "Modeling of stress distribution in granular piles: Comparison with centrifuge experiments", Chaos, 9(3), 523-543. https://doi.org/10.1063/1.166427.
  33. Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. http://doi.org/10.12989/gae.2015.8.6.829.
  34. Nguyen-Thanh, N., Li, W., Huang, J. and Zhou, K. (2020), "Adaptive higher-order phase-field modeling of anisotropic brittle fracture in 3D polycrystalline materials", Comput. Meth. Appl. Mech. Eng., 372, 113434. https://doi.org/10.1016/j.cma.2020.113434.
  35. Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A. and Rabczuk, T. (2011), "Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids", Comput. Meth. Appl. Mech. Eng., 200(21-22), 1892-1908. https://doi.org/10.1016/j.cma.2011.01.018.
  36. Nguyen-Thanh, N., Li, W., Huang, J., Srikanth, N. and Zhou, K. (2019), "An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems", Int. J. Numer. Meth. Eng., 120(2), 209-230. https://doi.org/10.1002/nme.6132.
  37. Nguyen, T. and Pipatpongsa, T. (2020), "Plastic behaviors of asymmetric prismatic sand heaps on the verge of failure", Mech. Mater., 151, 103624. https://doi.org/10.1016/j.mechmat.2020.103624.
  38. Nguyen, T., Pipatpongsa, T., Kitaoka, T. and Ohtsu, H. (2018), "Numerical investigation of stress dip in embankments using elastic model based on isogeometric analysis method", J. Jap. Soc. Civ. Eng., 74(2), 349-360. https://doi.org/10.2208/jscejam.74.I_349.
  39. Nguyen, T., Pipatpongsa, T., Kitaoka, T. and Ohtsu, H. (2019), "Stress distribution in conical sand heaps at incipient failure under active and passive conditions", Int. J. Solids Struct., 168, 1-12. https://doi.org/10.1016/j.ijsolstr.2018.04.001.
  40. Nguyen, V.P., Anitescu, C., Bordas, S.P.A. and Rabczuk, T. (2015), "Isogeometric analysis: An overview and computer implementation aspects", Math. Comput. Simul., 117, 89-116. https://doi.org/10.1016/j.matcom.2015.05.008.
  41. Nguyen, V.P., Rabczuk, T., Bordas, S. and Duflot, M. (2008), "Meshless methods: A review and computer implementation aspects", Math. Comput. Simul., 79(3), 763-813. https://doi.org/10.1016/j.matcom.2008.01.003.
  42. Okamura, M., Tamamura, S. and Yamamoto, R. (2013), "Seismic stability of embankments subjected to pre-deformation due to foundation consolidation", Soils Found., 53(1), 11-22. https://doi.org/10.1016/j.sandf.2012.07.015.
  43. Ooi, J., Ai, J., Zhong, Z., Chen, J. and Rotter, J. (2008), Progressive Pressure Measurements beneath a Granular Pile with and without Base Deflection, in Structures and Granular Solids, CRC Press, 87-92.
  44. Oron, G. and Herrmann, H.J. (1998), "Exact calculation of force networks in granular piles", Phys. Rev. E, 58(2), 2079-2089. https://doi.org/10.1103/PhysRevE.58.2079.
  45. Parry, R.H. (1954), "Measurement of pressure distribution across the base of triangular section granular masses", Ph.D. Dissertation, University of Melbourne, Melbourne, Australia.
  46. Peters, J.F., Muthuswamy, M., Wibowo, J. and Tordesillas, A. (2005), "Characterization of force chains in granular material", Phys. Rev. E, 72(4), 041307.
  47. Piegl, L. and Tiller, W. (1995), The NURBS Book, Springer-Verlag Berlin Heidelberg, Germany.
  48. Pipatpongsa, T., Matsushita, T., Tanaka, M., Kanazawa, S. and Kawai, K. (2014), "Theoretical and experimental studies of stress distribution in wedge-shaped granular heaps", Acta Mech. Solid. Sin., 27(1), 28-40. https://doi.org/10.1016/S0894-9166(14)60014-8.
  49. Pipatpongsa, T., Nakamura, J., Borely, C. and Khosravi, M. (2014), "Numerical lower bound limit analyses of sand heap subjected to basal settlement with hysteretic reversals", Proceedings of the 14th International Conference of International Association for Computer Methods and Recent Advances in Geomechanics, Kyoto, Japan, September.
  50. Savage, S.B. (1998), Modeling and Granular Material Boundary Value Problems, in Physics of Dry Granular Media, Springer, Dordrecht, Germany. 25-96.
  51. Smid, J. and Novosad, J. (1981), "Pressure distribution under heaped bulk solids", Proceedings of the 1981 Powtech Conference, Birmingham, U.K., March.
  52. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley and Sons, Inc., New York, U.S.A.
  53. Tran, L.V., Lee, J., Nguyen-Van, H., Nguyen-Xuan, H. and Wahab, M.A. (2015), "Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory", Int. J. Non-Lin. Mech., 72, 42-52. https://doi.org/10.1016/j.ijnonlinmec.2015.02.007.
  54. Tran, L.V. and Niiranen, J. (2020), "A geometrically nonlinear Euler-Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications", Math. Mech. Complex Syst., 8(4), 345-371. https://doi.org/10.2140/memocs.2020.8.345
  55. Tran, L.V., Phung-Van, P., Lee, J., Wahab, M.A. and Nguyen-Xuan (2016), "Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates", Compos. Struct., 140, 655-667. https://doi.org/10.1016/j.compstruct.2016.01.001.
  56. Trollope, D.H. (1956), "The stability of wedges of granular materials", University of Melbourne, Melbourne, Austalia.
  57. Trollope, D.H. and Burman, B.C. (1980), "Physical and numerical experiments with granular wedges", Geotechnique, 30(2), 137-157. https://doi.org/10.1680/geot.1980.30.2.137.
  58. Wensrich, C. and Katterfeld, A. (2012), "Rolling friction as a technique for modelling particle shape in DEM", Powder Technol., 217, 409-417. https://doi.org/10.1016/j.powtec.2011.10.057.
  59. Wittmer, J.P., Cates, M.E. and Claudin, P. (1997), "Stress propagation and arching in static sandpiles", J. Physique I, 7(1), 39-80. https://doi.org/10.1051/jp1:1997126.
  60. Wittmer, J.P., Claudin, P., Cates, M.E. and Bouchaud, J.P. (1996), "An explanation for the central stress minimum in sand piles", Nature, 382(6589), 336-338. https://doi.org/10.1038/382336a0.
  61. Yang Y., Tang X., Zeng H., Liu Q. and He L. (2016), "Threedimensional fracture propagation with numerical manifold method", Eng. Anal. Bound. Elem., 72, 65-77. https://doi.org/10.1016/j.enganabound.2016.08.008.
  62. Yang Y., Tang X., Zeng H., Liu Q. and and Liu Z. (2018), "Hydraulic fracturing modeling using the enriched numerical manifold method", Appl. Math. Model., 53, 462-486. https://doi.org/10.1016/j.apm.2017.09.024.
  63. Yang Y., Sun G., Zeng H. and Qi Y. (2019), "Investigation of the sequential excavation of a soil-rock-mixture slope using the numerical manifold method", Eng. Geol., 256, 93-109. https://doi.org/10.1016/j.enggeo.2019.05.005.
  64. Yang Y., Wu W. and Zeng H. (2021), "Stability analysis of slopes using the vector sum numerical manifold method", B. Eng. Geol. Environ., 80, 345-352. https://doi.org/10.1007/s10064-020-01903-x.
  65. Zhou, Z., Zou, R., Pinson, D. and Yu, A. (2014), "Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles", Granul. Matter, 16(5), 695-709. https://doi.org/10.1007/s10035-014-0522-4.
  66. Wu W., Yang Y. and Zeng H. (2020), "Enriched mixed numerical manifold formulation with continuous nodal gradients for dynamics of fractured poroelasticity", Appl. Math. Model., 86, 225-258. https://doi.org/10.1016/j.apm.2020.03.044.