DOI QR코드

DOI QR Code

양이온성 계면활성제(DTAB, TTAB 및 CTAB)에 의한 4-할로겐화 아닐린의 가용화에 대한 연구

Study on the Solubilization of 4-Halogenated Anilines by Cationic Surfactants (DTAB, TTAB, and CTAB)

  • 이병환 (한국기술교육대학교 응용화학공학과) ;
  • 이동철 (한국기술교육대학교 응용화학공학과)
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Tech. & Edu.) ;
  • Lee, Dong-Cheol (Department of Applied Chemical Engineering, Korea University of Tech. & Edu.)
  • 투고 : 2021.07.07
  • 심사 : 2021.08.25
  • 발행 : 2021.08.31

초록

양이온성 계면활성제(DTAB, TTAB 및 CTAB)에 의한 4-할로겐화 아닐린의 가용화상수(Ks)값을 UV-Vis법으로 측정하였다. 그 결과, 모든 아닐린 유도체에서 온도의 증가에 따라 Ks은 모두 감소하였으며, 할로겐 치환기의 반지름과 계면활성제의 소수기길이를 증가할수록 Ks값은 더욱 증가하였다. 이들 가용화상수 값을 이용하여 계산한 ΔGo와 ΔHo값은 측정한 범위 내에서 모두 음의 값을 그리고 ΔSo값은 모두 양의 값을 나타내었다. 모든 아닐린 유도체에서 온도를 증가함에 따라 ΔGo값은 감소하는 경향을 보였다. 그러나 온도의 증가에 따라 ΔHo와 ΔSo값은 모두 증가하는 경향을 보였다. 한편 할로겐치환기의 반지름을 증가할수록 이들 열역학 함수 값들은 대체적으로 감소하는 경향을 보였다. 그러나 계면활성제의 소수기길이를 증가하였을 때 이들 열역학 함수 값은 아닐린유도체의 종류에 따라 다르지만 대체적으로 증가하는 경향을 보였다. 이런 열역학 함수 값들의 변화로부터 4-할로겐화 아닐린과 미셀과의 상호작용의 종류와 세기를 그리고 이들이 미셀 내에서 가용화되는 위치를 추정할 수 있었다.

The solubilization constants (Ks) of 4-halogenated aniline derivatives by cationic surfactants (DTAB, TTAB, and CTAB) were measured by the UV-Vis method. As a result, the Ks values decreased as the temperature increased for all the aniline derivatives and showed a tendency to increase as the radius of the halogen substituent and the hydrophobic length of surfactant increased. The calculated values of ΔGo and ΔHo for these solubilizations all showed negative values within the measured range, but all the ΔSo values showed positive values. For all the 4-halogenated anilines, the ΔGo values all tended to decrease as the temperature increased, but both values of ΔHo and ΔSo showed a tendency to increase. In addition, as the radius of the halogen substituent increased, the values of ΔHo and ΔSo tended to decrease in general. However, when the hydrophobic group length of the surfactant was increased, the values of these thermodynamic functions showed a tendency to increase in general, although it differed depending on the type of aniline derivative. From the changes of such functions, it was possible to estimate the type and strength of interactions between 4-halogenated aniline and micelle, and the location at which they were solubilized in the micelle.

키워드

과제정보

본 연구는 한국기술교육대학교의 2021년도 교육연구진흥비에 의해 수행된 것이며, 연구지원에 감사드립니다.

참고문헌

  1. A. Patra, N. Samanta, D.K. Das, R.K. Mitra, "Enhanced catalytic activity of α-chymotrypsin in cationic surfactant solutions: the component specificity revisited", Journal of Physical Chemistry B, Vol.121, pp.1457-1465, (2017). https://doi.org/10.1021/acs.jpcb.6b10472
  2. V. Wintgens, J.G. Harangozo, Z. Miskolczy, J.-M. Guigner, C. Amiel, L. Biczok, "Effect of headgroup variation on the self-assembly of cationic surfactants with sulfonatocalix[6]arene", Langmuir, Vol.33, pp.8052-8061, (2017). https://doi.org/10.1021/acs.langmuir.7b01941
  3. D.C. Lee, B.H. Lee, "Thermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB)", Journal of the Korean Applied Science and Technology, Vol.36, No.4, pp.1143-1152, (2019).
  4. Y. Li, T. Sato, "Complexation of a globular protein, β-lactoglobulin, with an anionic surfactant in aqueous solution", Langmuir, Vol.33, pp.5491-5498, (2017). https://doi.org/10.1021/acs.langmuir.7b00941
  5. Z. Wang, R.G. Larson, "Molecular dynamics simulations of threadlike cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts", Journal of Physical Chemistry B, Vol.113, pp.13697-13710, (2009). https://doi.org/10.1021/jp901576e
  6. W. Muller, C. Dejugnat, T. Zemb, J.F. Dufreche, O. Diat, "How do anions affect self-assembly and solubility of cetylpyridinium surfactants in water", Journal of Physical Chemistry B, Vol.117, pp.1345-1356, (2013). https://doi.org/10.1021/jp3093622
  7. J. Luczak, C. Jungnickel, M. Markiewicz, J. Hupka, "Solibilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids", Journal of Physical Chemistry B, Vol.117, pp.5653-5658, (2013). https://doi.org/10.1021/jp3112205
  8. S.P. Moulik, M.E. Haque, P.K. Jana, A.R. Das, "Micellar properties of cationic surfactants in pure and mixed states", Journal of Physical Chemistry, Vol.100, pp.701-708, (1996). https://doi.org/10.1021/jp9506494
  9. N.M. Lee, B.H. Lee, "Effects of temperature and surfactant structure on the solubilization of 4-chlorobenzoic acid by various surfactants", Journal of Chemical Thermodynamics, Vol.101, pp.1-6, (2016). https://doi.org/10.1016/j.jct.2016.05.002
  10. C.A. Bunton, L. Sepulveda, "Hydrophobic and coulombic interactions in the micellar binding of phenols and phenoxide ions", Journal of Physical Chemistry, Vol.83, pp. 680-683, (1979). https://doi.org/10.1021/j100469a008
  11. T. Mehling, L. Kloss, T. Ingram, I. Smirnova, "Partition coefficients of ionizable solutes in mixed nonionic/ionic micellar systems", Langmuir, Vol.29, pp.1035-1044, (2013). https://doi.org/10.1021/la304222n
  12. J.C. Bozelli Jr, Y.H. Hou, R.M. Epand, "Thermodynamics of methyl-β-cyclodextrin induced lipid vesicle solubilization: effect of lipid headgroup and backbone", Langmuir, Vol.33, pp.13882-13891, (2017). https://doi.org/10.1021/acs.langmuir.7b03447
  13. B.H. Lee, S.D. Christian, E.E. Tucker, J.F. Scamehorn, "Solubilization of mono- and dichlorophenols by hexadecylpyridinium chloride micelle. Effects of substituent groups", Langmuir, Vol.6, pp.230-235, (1990). https://doi.org/10.1021/la00091a037
  14. D.C. Lee, B.H. Lee, "Study on the solubilization of 4-ethylaniline in the aqueous solutions of mixed surfactants", Journal of the Korean Applied Science and Technology, Vol.37, No.3, pp.438-447, (2020). https://doi.org/10.12925/JKOCS.2020.37.3.438
  15. C. Hirose, L. Sepulveda, "Transfer free energies of p-alkyl-substituted bnezene derivatives, benzene, and toluene from water to cationic and anionic micelles and to n-heptane", Journal of Physical Chemistry, Vol.85, pp.3689-3694, (1981). https://doi.org/10.1021/j150624a032
  16. A. Makayssi, R. Bury, C. Treiner, "Thermodynamics of micellar solubilization for 1-pentanol in weakly interacting binary cationic surfactant mixtures", Langmuir, Vol.10, pp.1359-1365, (1994). https://doi.org/10.1021/la00017a009
  17. H. Hoiland, E. Ljosland, S. Baklund, "Solubilization of alcohols and alkanes in aqueous solution of sodium dodecyl sulfate", Journal of Colloid and Interface Science, Vol.101, pp.467-471, (1984). https://doi.org/10.1016/0021-9797(84)90058-4
  18. D. Yordanova, E. Ritter, I. Smirnova, S. Jakobtorweihen, "Micellization and partition equilibria in mixed nonionic/ionic micellar systems: predictions with molecular models", Langmuir, Vol.33, pp.12306-12316, (2017). https://doi.org/10.1021/acs.langmuir.7b02813
  19. Y. Eda, N. Takisawa, K. Shirahama, "Solubilization of isomeric alkanols in ionic micelles", Langmuir, Vol.13, pp.2432-2435, (1997). https://doi.org/10.1021/la960856a
  20. G. Cerichelli, "Role of counterions in the solubilization of benzene by cetyltrimethylammonium aggregates. A multinuclear NMR investigation", Langmuir, Vol.16, pp.182-187, (2000). https://doi.org/10.1021/la990748z
  21. L. Nong, C. Xiao, Z. Zhong, "Physicochemical properties of novel phosphorbetaine zwitterionic surfactants and mixed systems with an anionic surfactant", Journal of Surfactants and Detergents, Vol.14. pp.433-438, (2011). https://doi.org/10.1007/s11743-011-1259-2
  22. S. Friesen, T. Buchecker, A. Cognigni, K. Bica, R. Buchner, "Hydration and counterion binding of [C12MIN] micelles", Langmuir, Vol.33, pp.9844-9856, (2017). https://doi.org/10.1021/acs.langmuir.7b02201