References
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D., et al. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. with Comput., https://doi.org/10.1007/s00366-020-01070-3.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Ambartsumyan, S.A. (1970), Theory of Anisotropic Plate, (1st edition), Technomic Publishing Co.
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://dx.doi.org/10.12989/scs.2020.34.4.615.
- Asghar, S., Naeem, M.N., Hussain, M. and Tounsi, A. (2020), "Nonlocal vibration of DWCNTs based on Flugge shell model using wave propagation approach", Steel Compos. Struct., 34(4), 599-613. https://doi.org/10.12989/scs.2020.34.4.599.
- Ashraf, M.A., et al. (2020), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPLRC annular sector plates", Eng. with Comput., https://doi.org/10.1007/s00366-020-01068-x.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. http://dx.doi.org/10.12989/scs.2020.36.6.671.
- Batou, B., Nebab, M., Bennai, R., AitAtmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Birman, V. (1995), "Stability of functionally graded hybrid composite plates", Compos. Eng., 5(7), 913-921. https://doi.org/10.1016/0961-9526(95)00036-M.
- Birman, V. and Bert, C.W. (1993), "Buckling and Post-buckling of Composite Plates and Shells Subjected to Elevated Temperature", J. Appl. Mech., 60(2), 514-519. https://doi.org/10.1115/1.2900823.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H., and AddaBedia, E.A. (2020), 'Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. http://dx.doi.org/10.1016/j.mechrescom.2016.02.015.
- Dahsin, L. and Xiaoyu, L. (1996), "An overall view of laminate theories based on displacement hypothesis", J. Compos. Mater., 30(14), 1539-1561. https://doi.org/10.1177/002199839603001402.
- Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Therm. Stresses, 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
- Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260, http://dx.doi.org/10.12989/scs.2020.34.2.241.
- Eslami, M.R. and Javaheri, R. (1999), "Buckling of composite cylindrical shells under mechanical and thermal loads", J. Therm. Stresses, 22(6), 527-545. https://doi.org/10.1080/014957399280733.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- Ghandourah, E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89, http://dx.doi.org/10.12989/scs.2020.34.1.075.
- Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear thermal free vibration frequency analysis of delaminated shell panel using FEM", Compos. Struct., 224, 111011. https://doi.org/10.1016/j.compstruct.2019.111011.
- Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", Appl. Math. Comput., 218(6), 2670-2692. https://doi.org/10.1016/j.amc.2011.08.008.
- Kar, V.R. and Panda, S.K. (2016a), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
- Kar, V.R. Mahapatra, T.R. and Panda, S.K. (2016b), "Effect of Different Temperature Load on Thermal Postbuckling Behaviour of Functionally Graded Shallow Curved Shell Panels", Compos. Struct., 160, 1236-1247. http://dx.doi.org/10.1016/j.compstruct.2016.10.125.
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016c), "Thermal Buckling Behaviour of Shear Deformable Functionally Graded Single/Doubly Curved Shell Panel with TD and TID Properties", Adv. Mater. Res., 5(4), 205-221. http://dx.doi.org/10.12989/amr.2016.5.4.205.
- Kar, V.R. and Panda, S.K. (2016d), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115-116, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
- Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. http://dx.doi.org/10.12989/sss.2017.20.5.595.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. http://dx.doi.org/10.12989/amr.2017.6.4.349.
- Katariya, P.V. and Panda, S.K. (2019), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. http://dx.doi.org/10.12989/scs.2020.34.2.279.
- Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89, 197-205. https://doi.org/10.1016/j.compstruct.2008.07.017.
- Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X.
- Liew, K.M., Wang, J., Ng, T.Y. andTan, M.J. (2004), "Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method", J. Sound Vib., 276, 997-1017. https://doi.org/10.1016/j.jsv.2003.08.026.
- Mallikarjuna, M. and Kant, T.A. (1993), "Critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N.
- Mantari, J.L., Oktem, A.S. and GuedesSoares, C. (2011), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. part B-Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.
- Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68(4), 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216(15), 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
- Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
- Mehar, K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., https://doi.org/10.1080/15376494.2020.1725193.
- Meyers,C.A. and Hyer, M.W. (1991), "Thermal buckling and postbuckling of symmetrically laminated composite plates", J. Therm. Stresses, 14(4), 519-540. https://doi.org/10.1080/01495739108927083.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38. https://doi.org/10.1115/1.4010217
- Na, K.S. and Kim, J.H. (2006), "Three-dimensional thermomechanical buckling analysis for functionally graded composite plates", Compos. Struct., 73(4), 413-422. https://doi.org/10.1016/j.compstruct.2005.02.012.
- Narita, Y. and Leissa, A.W. (1990), "Buckling studies for simply supported symmetrically laminated rectangular plates", Int. J. Mech. Sci., 32(11), 909-924. https://doi.org/10.1016/0020-7403(90)90063-O.
- Noor, A.K. and Burton, W.S. (1992), "Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates", J. Appl. Mech., 59(4), 848-856. https://doi.org/10.1115/1.2894052.
- Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscip. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
- Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49. https://doi.org/10.1007/s11465-014-0284-z.
- Panc, V. (1975), Theories of Elastic Plates (Mechanics of Surface Structures, 2), Noordhof International Publishing, Leyden, Netherlands.
- Panda, S.K. and Singh, B.N. (2009a), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
- Panda, S.K and Singh, B.N. (2009b), "Nonlinear free vibration of spherical shell panel using higher order shear deformation theory - A finite element approach", Int. J. Pressure Vessels Piping, 86(6), 373-383. https://doi.org/10.1016/j.ijpvp.2008.11.023.
- Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally postbuckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6, 175-188. https://doi.org/10.1007/s10999-010-9127-1
- Panda, S.K and Singh, B.N. (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.
- Panda, S.K and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47(4), 378-386. 0168-874X. https://doi.org/10.1016/j.finel.2010.12.008..
- Panda, S.K. and Singh, B.N. (2013a), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007.
- Panda, S.K. and Singh, B.N. (2013b), "Thermal Postbuckling Behavior of Laminated Composite Spherical Shell Panel Using NFEM#", Mech. Based Des. Struc., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
- Panda, S.K. and Singh, B.N. (2013c), "Post-Buckling Analysis of Laminated Composite Doubly Curved Panel Embedded with SMA Fibers Subjected to Thermal Environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097.
- Panda, S.K. and Singh, B.N. (2013d), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers", Nonlinear Dyn, 74, 395-418. https://doi.org/10.1007/s11071-013-0978-5.
- Panda, S.K. and Katariya, P.V. (2015), "Stability and Free Vibration Behaviour of Laminated Composite Panels Under Thermo-mechanical Loading", Int. J. Appl. Comput. Math., 1, 475-490. https://doi.org/10.1007/s40819-015-0035-9.
- Pandya, B.N. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations", Int. J. Solid. Struct., 24(12), 419-451. https://www.civil.iitb.ac.in/~tkant/papers/TKant-IITB-JP016.pdf
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Peng, L.X., Liew, K.M. and Kitipornchai, S. (2006), "Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method", J. Sound Vib., 289(3), 421-449. https://doi.org/10.1016/j.jsv.2005.02.023.
- Pham, Q.H., et al. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. with Comput., 36, 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
- Qin, Y., Luo, K.R. and Yan, X. (2020), "Buckling analysis of steel plates in composite structures with novel shape function", Steel Compos. Struct., 35(3), 405-413. https://doi.org/10.12989/scs.2020.35.3.405.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. http://dx.doi.org/10.12989/scs.2020.35.1.077.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reissner, E. (1945), "The Effect of Transverse Shear Deformation on the Bending of Elastic Plates", ASME J. Appl. Mech., 12, 68-77. https://doi.org/10.1016/j.compstruct.2008.07.017.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. http://dx.doi.org/10.12989/scs.2019.33.6.805.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Shariyat, M. (2007), "Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory", Thin-Wall. Struct., 45(4), 439-452. https://doi.org/10.1016/j.tws.2007.03.004.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
- Shi, Y., Lee, R.Y.Y. and Mei, C. (1999), "Thermal postbuckling of composite plates usingthe finite element modal coordinates method", J. Therm. Stresses, 22(6), 595-614. https://doi.org/10.1080/014957399280779.
- Shiau, L.C., Kuo, S.Y. and Chen, C.Y. (2010), "Thermal buckling behavior of composite laminated plates", Compos. Struct., 92(2), 508-514. https://doi.org/10.1016/j.compstruct.2009.08.035.
- Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thanh, C.L., et al. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. with Comput., https://doi.org/10.1007/s00366-020-01154-0.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. with Comput., https://doi.org/10.1007/s00366-020-01107-7.
- Wang, J., Liew, K.M., Tan, M.J. and Rajendran, S. (2002), "Analysis of rectangular laminated composite plates via FSDT meshless method", Int. J. Mech. Sci., 44(7), 1275-1293. https://doi.org/10.1016/S0020-7403(02)00057-7.
- Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos.Part B: Eng., 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.
- Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Wall. Struct., 101, 141-156, https://doi.org/10.1016/j.tws.2015.12.008.
- Zhang, L.W., Zhu, P. and Liew, K.M. (2014), "Thermal buckling of functionally graded plates using a local Krigingmeshless method", Compos. Struct., 108, 472-492 https://doi.org/10.1016/j.compstruct.2013.09.043.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005.