DOI QR코드

DOI QR Code

Tensile behavior of stainless steel S30408 at the Arctic low temperature

  • Yan, Jia-Bao (Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Lin, Zhicheng (School of Civil Engineering, Tianjin University) ;
  • Xie, Peng (School of Marine Engineering and Technology, Sun Yat-Sen University) ;
  • Luo, Yun-Biao (Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University) ;
  • Li, Yanbo (School of Marine Engineering and Technology, Sun Yat-Sen University)
  • Received : 2021.05.12
  • Accepted : 2021.07.30
  • Published : 2021.09.10

Abstract

This paper investigated tensile behaviours of S30408 at the Arctic low temperatures (T) of -80~20℃. A cooling chamber equipped with liquid nitrogen gas was adopted to rebuild the Arctic low-temperature environment. Standard tension tests were performed on 48 coupons with different thickness at different T values of -80, -60, -30, and 20℃. Test results revealed the ductile failure mode of stainless steel S30408 even at -80℃. The tensile stress-strain (𝜎-𝜀) curves of S30408 at ambient temperatures exhibited a long strain hardening plateau. Meanwhile, the low-temperature tensile 𝜎-𝜀 curves of S30408 were different from those at ambient temperatures, which exhibited a second hardening stage with a larger slope than the first hardening. The decreasing T generally increased the elastic modulus, yield and ultimate strength, but reduced the ductility of S30408. Decreasing the T from 20 to -80℃ reduced the ductility of S30408 by about 28%, but improved the elastic modulus, yield and ultimate strength by about 20%, 22%, and 75%, respectively. This paper also adopted the best subset regression analysis method to develop empirical formulae on estimating influences of T on mechanical properties of S30408. Validations of the predictions by these empirical formulae against the test results in the literature proved their accuracies.

Keywords

Acknowledgement

The authors would like to acknowledge the National Natural Science Foundation of China (Grant No. 52001337) and Key Program of Marine Economy Development (Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province [(GDNRC [2020]028, GDOE [2019] A19)]. The authors gratefully express their gratitude for the financial supports.

References

  1. Afshan, S. and Gardner, L. (2013), "Experimental study of cold-formed ferritic stainless steel hollow sections", J. Struct. Eng., 139(5), 717-728. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000580.
  2. Anwar, U.H., Hani, M.T. and Nureddin, M.A. (2005), "Failure of weld joints between carbon steel pipe and 304 stainless steel elbows", Eng. Fail. Anal., 12, 181-191. https://doi.org/10.1016/j.engfailanal.2004.07.003
  3. Ashraf, M., Gardner, L. and Nethercot, D.A. (2005) "Strength enhancement of the corner regions of stainless steel cross-sections", J. Constr. Steel Res., 61(1), 37-52. https://doi.org/10.1016/j.jcsr.2004.06.001.
  4. Barat, K., Bar, H.N., Mandal, D., Roy, H., Sivaprasad, S. and Tarafde, S. (2014), "Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel", Mater. Sci. Eng. A., 597(597), 37-45. https://doi.org/10.1016/j.msea.2013.12.067.
  5. Behjati, P., Najafizadeh, A. and Kermanpur, A. (2011), "Microstructural investigation on strengthening mechanisms of AISI 304L austenitic stainless steel during cryogenic deformation", Mater. Sci. Technol., 27(12), 1828-1832. https://doi.org/10.1179/1743284710Y.0000000040.
  6. Byun, T.S., Hashimoto, N. and Farrell, K. (2004), "Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels", Acta Mater., 52(13), 3889-3899. https://doi.org/10.1016/j.actamat.2004.05.003.
  7. Chen, J. and Young, B. (2006). "Stress-strain curves for stainless steel at elevated temperatures", Eng. Struct., 28(2), 229-239. https://doi.org/10.1016/j.engstruct.2005.07.005.
  8. Chung, H.M., Strain, R.V. and Shack, W.J. (2001), "Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose", Nucl. Eng. Des., 208, 221-234. https://doi.org/10.1016/S0029-5493(01)00411-3.
  9. Dai, X. and Lam. D. (2010), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539. http://doi.org/10.12989/scs.2010.10.6.517.
  10. De, A.K., Speer, J.G., Matlock, D.K., Murdock, D.C., Mataya, M.C. and Comstock, R.J. (2006), "Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel", Metall. Mater. Trans. A., 37(6), 1875-1886. https://doi.org/10.1007/s11661-006-0130-y.
  11. Ding, H.M., Wu, Y.Z., Lu, Q.J., Wang, Y.B., Zheng, J.Y. and Xi, P. (2019), "A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures", Cryogenics., 101, 89-100. https://doi.org/10.1016/j.cryogenics.2019.06.003.
  12. Ehlers, S. and Ostby, E. (2012), "Increased crash worthiness due to arctic conditions - The influence of sub-zero temperature", Mar. Struct., 28, 86-100. https://doi.org/10.1016/j.marstruc.2012.05.004.
  13. Elices, M., Corres, H. and Planas, J. (1988), "Behaviour at cryogenic temperatures of steel for concrete reinforcement", Mater. Struct., 21, 278-285. https://doi.org/10.1007/s12209-016-2618-x.
  14. Ellobody, E. and Young, B. (2007), "Investigation of cold-formed stainless steel non-slender circular hollow section columns", Steel Compos. Struct., 7(4), 321-337. http://dx.doi.org/10.12989/scs.2007.7.4.321.
  15. Fan, S.G., Ding, X.F., Sun, W.J., Zhang, L.Y. and Liu, M.J. (2016), "Experimental investigation on fire resistance of stainless steel columns with square hollow section", Thin Wall. Struct., 98(1), 196-211. https://doi.org/10.1016/j.tws.2017.08.020.
  16. Fan, S.G., Jia, L.L., Lyu, X., Sun, W.J., Chen, M.H. and Zheng, J.C. (2017), "Experimental investigation of austenitic stainless steel material at elevated temperatures", Constr. Build. Mater., 155, 267-285. https://doi.org/10.1016/j.conbuildmat.2017.08.047.
  17. Fissoloa, A., Stelmaszykb, J.M., Gourdin, C., Bouin, P. and Perez, G. (2010), "Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life", Procedia Eng., 2, 1595-1604. https://doi.org/10.1016/j.proeng.2010.03.172.
  18. Gardner, L., Bu, Y. and Theofanous, M. (2016), "Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests", Eng. Struct., 127(11), 536-548. https://doi.org/10.1016/j.engstruct.2016.08.057.
  19. Gardner, L. and Nethercot, D.A. (2004), "Experiments on stainless steel hollow sections-Part 1: Material and cross-sectional behaviour", J. Constr. Steel Res., 60(9), 1291-1318. https://doi.org/10.1016/j.jcsr.2003.11.006.
  20. GB/T 13239-2006 (2006), Metallic Materials - Tensile Testing at Low Temperature, China Standards Press, Beijing.
  21. Gilat, A., Kuokkala, V.T., Seidt, J.D. and Smith, J.L. (2017), "Full-field measurement of strain and temperature in quasi-Static and dynamic tensile tests on stainless steel 316L", Procedia Eng., 207, 1994-1999. https://doi.org/10.1016/j.proeng.2017.10.1057.
  22. Guan, K., Wang, Z.M., Gao, M., Li, X.Y. and Zeng, X.Y. (2013), "Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel", Mater. Des., 50, 581-586. https://doi.org/10.1016/j.matdes.2013.03.056.
  23. He, B., Xie, M.J., Jiang, Z.W., Zhang, C. and Zhu, X.P. (2020), "Temperature field distribution and microstructure of cement-based materials under cryogenic freeze-thaw cycles", Constr. Build. Mater., 243, 118256. https://doi.org/10.1016/j.conbuildmat.2020.118256.
  24. Huang, L.G., Matlock, D. and Krauss, G. (1989), "Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet", Metall. Mater. Trans. A., 20(7), 1239-1246. https://doi.org/10.1007/BF02647406.
  25. Itoh, M., Yoshida, F., Yamashita, Y. and Ohmori, M. (1992), "FEM analysis for nonuniform yielding processes in mild-steel plates under stretching", JSME Int. J. Ser. 1., 35(1), 70-77. https://doi.org/10.1299/kikaia.56.1969.
  26. Kim, J.H., Park, W.S., Chun, M.S., Kim, J.J., Bae, J.H., Kim, M.H. and Lee, J.M. (2012), "Effect of pre-straining on low-temperature mechanical behavior of AISI 304L", Mater. Sci. Eng., A., 543, 50-57. https://doi.org/10.1016/j.msea.2012.02.044.
  27. Kiymaz, G. (2009), "Bearing strength of stainless steel bolted plates in tension", Steel Compos. Struct., 9(2), 173-189. https://doi.org/10.12989/scs.2009.9.2.173.
  28. Lee, W.S., Chen, T.H., Lin, C.F. and Luo, W.Z. (2011), "Dynamic mechanical response of biomedical 316L stainless steel as function of strain rate and temperature", Bioinorg. Chem. Appl., 2011(8), 173782. https://doi.org/10.1155/2011/173782.
  29. Li, Y.L., Guo, Y.Z., Hu, H.T. and Wei, Q. (2009), "A critical assessment of high-temperature dynamic mechanical testing of metals", Int. J. Impact Eng., 36(2), 177-184. https://doi.org/10.1016/j.ijimpeng.2008.05.004.
  30. Mishra, R.R., Tiwari, V.K. and Rajesha, S. (2014), "A study of tensile strength of MIG and TIG welded dissimilar joints of mild steel and stainless steel", Int. J. Adv. Mater. Sci. Eng., 3(3), 23-32. https://doi.org/10.14810/ijamse.2014.3203.
  31. Olson, G.B. and Cohen, M. (1976), "A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation", Metall. Mater. Trans. A., 7(11), 1897-1904. https://doi.org/10.1007/BF02659822.
  32. Park, W.S., Yoo, S.W., Kim, M.H. and Lee, J.M. (2010), "Strainrate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments", Mater. Des., 31(8), 3630-3640. https://doi.org/10.1016/j.matdes.2010.02.041.
  33. Quach, W.M., Teng, J.G. and Chung, K.F. (2008), "Three-stage full-range stress-strain model for stainless steels", J. Struct. Eng., 134(9), 1518-1527. https://doi.org/10.1061/(ASCE)0733-9445 (2008)134:9(1518).
  34. Rasmussen, K.J.T. (2003), "Full range stress-strain curves for stainless steel alloys", J. Constr. Steel Res., 59, 47-61. https://doi.org/10.1016/S0143-974X(02)00018-4.
  35. Rokilan, M. and Mahendra, M. (2020a), "Sub-zero temperature mechanical properties of cold-rolled steel sheets", Thin Wall. Struct., 154, 106842. https://doi.org/10.1016/j.tws.2020.106842.
  36. Rokilan, M. and Mahendra, M. (2020b), "Behaviour of cold-formed steel compression members at sub-zero temperatures", J. Constr. Steel Res., 172, 106156. https://doi.org/10.1016/j.jcsr.2020.106156.
  37. Sakumoto, Y., Nakazato, T. and Matsuzaki, A. (1996), "High-temperature properties of stainless steel for building structures", J. Struct. Eng., 122(4), 399-406. https://doi.org/10.1061/(asce)0733-9445(1996)122:4(399).
  38. Shibata, K., Ogata, T., Nyilas, A., Yuri, T., Fujii, H., Ohmiya, S., Onishi, T. and Weiss, K.P. (2008), "Comparison of Strength and Serration at Cryogenic Temperatures among 304L, 316L and 310S Steels", AIP., 986, 108-115. https://doi.org/10.1063/1.2900332.
  39. Shibata, K., Ogata, T. and Yuri, T. (2006), "Effect of martensitic transformation on serration of 304L steel at cryogenic temperatures", AIP Conf. Proc., 824, 83-90. https://doi.org/10.1063/1.2192337.
  40. Spencer, K., Embury, J.D., Conlon, K.T., Veron, M. and Brechet, Y. (2004), "Strengthening via the formation of strain-induced martensite in stainless steels", Mater. Sci. Eng., A., 387, 873-881. https://doi.org/10.1016/j.msea.2003.11.084.
  41. Theofanous, M. and Gardner, L. (2012), "Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections", Steel Compos. Struct., 12(1), 73-92. http://doi.org/10.12989/scs.2011.12.1.073.
  42. Tomita, Y. and Iwamoto, T. (2001), "Computational prediction of deformation behavior of TRIP steels under cyclic loading", Int. J. Mech. Sci., 43(9), 2017-2034. https://doi.org/10.1016/S0020-7403(01)00026-1
  43. Wang, X., Zhang, J., Du, Y. (2015), "High temperature mechanical properties of 00Cr17Ni14Mo2 stainless steel", J. Build. Mater., 18(5), 767-772. https://doi.org/10.3969/j.issn.1007-9629.2015.05.009.
  44. Xie, J., Cui, N., Yan, J.B. and Yu, J.H. (2019), "Experimental study on prestress losses of post-tensioned concrete members at ultra-low temperatures", Struct. Concrete, 20, 1828-1841. https://doi.org/10.1002/suco.201800264.
  45. Xie, J. and Yan, J.B. (2018), "Experimental studies and analysis on compressive strength of normal weight concrete at low temperatures", Struct. Concrete, 19(4), 1235-1244. https://doi.org/10.1002/suco.201700009.
  46. Yan, J.B., Liew, J.Y.R. and Zhang, M.H. (2014), "Mechanical properties of mild steel and high strength steel S690 under low temperature relevant to Arctic environment", Mater. Des., 61, 150-159. https://doi.org/10.1016/j.matdes.2014.04.057.
  47. Yan, J.B., Dong, X. and Zhu, J.S. (2019), "Compressive behaviours of CFST stub columns at low temperatures relevant to the Arctic environment", Constr. Build. Mater., 223, 503-519. https://doi.org/10.1016/j.conbuildmat.2019.07.026.
  48. Yan, Q.S., Lv, C.X., Sun, B.W. and Yang, L. (2020a), "Dynamic mechanical behavior at elevated temperatures and high strain rates of structural stainless steel used in civil engineering", J. Mater. Civ. Eng., 32(5), 04020094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003132.
  49. Yan, J.B., Xie, W.J., Luo, Y.L. and Wang, T. (2020b), "Behaviours of concrete stub columns confined by steel tubes at low temperatures", J. Constr. Steel Res., 170, 106124. https://doi.org/10.1016/j.jcsr.2020.106124.
  50. Yin, Y., Li, S., Han, Q. and Li, M.F. (2020), "Material parameters in void growth model for G20Mn5QT cast steel at low temperatures", Constr. Build. Mater., 243, 118123. https://doi.org/10.1016/j.conbuildmat.2020.118123.
  51. Yoo, S.W., Lee, C.S., Park, W.S., Kim, M.H. and Lee, J.M. (2011), "Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications", Comput. Mater. Sci., 50(7), 2014-2027. https://doi.org/10.1016/j.commatsci.2011.02.002.
  52. Young, B. and Lui, W.M. (2006a), "Tests on cold formed high strength stainless steel compression members", Thin Wall. Struct., 44(2), 224-234. https://doi.org/10.1016/j.tws.2006.01.006.
  53. Young, B. and Ellobody, E. (2006b), "Column design of cold-formed stainless steel slender circular hollow sections", Steel Compos. Struct., 6(4), 285-302. http://doi.org/10.12989/scs.2006.6.4.285
  54. Zhou, Y., Chouery, K.E., Shu. Z. and Jia, L.J. (2020), "Full-range plasticity of novel high-performance low-cost stainless steel QN1803", Steel Compos. Struct., 35(6), 739-752. http://doi.org/10.12989/scs.2020.35.6.739.