DOI QR코드

DOI QR Code

Seasonal Distribution of Ticks in Boeun, Chungbuk during 2016-2020

충북 보은지역의 참진드기류 분포조사 (2016-2020)

  • Lee, Geon Hui (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Jeon, Jong Chan (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Hyun Kyung (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
  • 이건희 (충북대학교 농업생명환경대학 식물의학과) ;
  • 전종찬 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김현경 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2021.06.25
  • Accepted : 2021.08.26
  • Published : 2021.09.01

Abstract

This study investigated the seasonal distribution of ticks in Boeun, Chungbuk, South Korea, from 2016 to 2020. Over the five-year period, ticks were collected annually from four different sites. A total of 17,704 ticks belonging to three tick species (Haemaphysalis longicornis, Haemaphysalis flava, and Ixodes nipponensis) were collected. H. longicornis was the dominant species across all four sites with the highest density of 68.40% of the total collected specimens, followed by H. flava (3.53%) and I. nipponensis (0.06%). The larvae of unidentified species were also collected: 11.81 T.I. (28.01%). The H. longicornis population peaked during the spring season (May-June), whereas the larval population peaked during August and September. H. longicornis was collected the most from four sites (coniferous forest, broad-leaf forest, mountain path, and copse), with the exception of the larvae, which was collected the most in grassland and grave. H. flava was collected from all sites, but in a small proportion. The SFTS virus was not found in any of the 828 pools of ticks during 2016-2020. Based on the results of this study, the continuous surveillance of the tick population is recommended to mitigate the spread of diseases by these vectors.

본 연구는 2016년부터 2020년까지 충북 보은지역의 참진드기류의 시기별 분포를 조사하였다. 참진드기류는 다양한 환경(매년 4지점)에서 채집하였고, 5년 동안 충북 보은지역에서 채집된 참진드기류는 2속 3종으로 작은소피참진드기(Haemaphysalis longicornis), 개피참진드기(Haemaphysalis flava), 일본참진드기(Ixodes nipponensis)로 총 17,704개체의 참진드기가 채집되었다. 작은소피참진드기는 가장 많은 28.83 T.I. (68.40%) 값을 보였고, 개피참진드기 1.49 T.I. (3.53%), 일본참진드기 0.02 T.I. (0.06%)순으로 채집되었고 종 동정이 되지 않는 유충은 11.81 T.I. (28.01%)로 조사되었다. 우점을 차지하는 작은소피참진드기는 봄철 (5-6월)에, 유충은 8월과 9월에 가장 많은 수가 채집되었다. 대부분의 채집지에서 작은소피참진드기가 가장 많이 채집되었고 무덤과 초지에서만 유충이 많이 채집되었다. 개피참진드기는 충북 보은지역에서 채집된 개체수는 적지만 모든 채집지에서 분포하는 것으로 나타났다. 5년간 채집된 3종의 참진드기류에 대하여 총 828 pools의 SFTS 감염률을 조사한 결과 모두 음성으로 병원체 감염이 확인되지 않았다.

Keywords

Acknowledgement

본 연구는 질병관리본부의 민간경상보조사업 '권역별 기후 변화 매개체 감시 거점센터'의 지원으로 수행되었습니다.

References

  1. Anderson, J.F., Magnarelli, L.A., 2008. Biology of ticks. Infec. Dis. Clin. North Am. 22, 195-215. https://doi.org/10.1016/j.idc.2007.12.006
  2. Baker-Austin, C., Trinanes, J.A., Taylor, N.G.H., Hartnell, R., Siitonen, A., Urtaza, J.M., 2013. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 3, 73-77. https://doi.org/10.1038/nclimate1628
  3. Benelli, G., Pavela, R., Canale, A., Mehlhorn, H., 2016. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 115, 2545-2560. https://doi.org/10.1007/s00436-016-5095-1
  4. Burge, C.A., Eakin, C. M., Friedman, C. S., Froelich, B., Hershberger, P.K., Hofmann, E.E., Petes, L.E., Prager, K.C., Weil, E., Willis, B.L., Ford, S.E., Harvell, C.D., 2014. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 6, 249-277. https://doi.org/10.1146/annurev-marine-010213-135029
  5. Chae, J.B., Cho, Y.S., Cho, Y.K., Kang, J.G., Shin, N.S., Chae, J.S., 2019. Epidemiological investigation of tick species from near domestic animal farms and cattle, goat, and wild boar in Korea. Korean. J. Parasitol. 57, 319. https://doi.org/10.3347/kjp.2019.57.3.319
  6. Colwell, D.D., Filipe D.T., Domenico O., 2011. Vector-borne parasitic zoonoses: Emerging scenarios and new perspectives. Vet. Parasit. 182, 14-21. https://doi.org/10.1016/j.vetpar.2011.07.012
  7. Dobson, A.D. M., Jennifer L.T., Sarah E.R., 2011a. Tick (Ixodes ricinus) abundance and seasonality at recreational sites in the UK: Hazards in relation to fine-scale habitat types revealed by complementary sampling methods. Ticks Tick Borne Dis. 2, 67-74. https://doi.org/10.1016/j.ttbdis.2011.03.002
  8. Dobson, A.D.M., Finnie, T.J.R., Randolph, S.E., 2011b. A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus. J. Appl. Ecol. 48, 1017-1028. https://doi.org/10.1111/j.1365-2664.2011.02003.x
  9. Dominguez, L., Miranda, J.R., Torres, S., Moreno, R., Ortega, J., Bermudez, E.S., 2019. Hard tick (Acari: Ixodidae) survey of Oleoducto trail, Soberania National Park, Panama. Ticks Tick Borne Dis. 10, 830-837. https://doi.org/10.1016/j.ttbdis.2019.04.001
  10. Eisen, R.J., Kugeler, K.J., Eisen, L., Beard, C.B., Paddock, C.D., 2017. Tick-borne zoonoses in the United States: persistent and emerging threats to human health. ILAR J. 58, 319-335. https://doi.org/10.1093/ilar/ilx005
  11. Garrett, K.A., Dobson, A. D. M., Kroschel. J., Natarajan. B., Orlandini, S., Tonnang, H.E.Z., Valdivia, C., 2013. The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agric. For. Meteorol. 170, 216-227. https://doi.org/10.1016/j.agrformet.2012.04.018
  12. Harvell, D., Altizer, S., Cattadori, I. M., Harrington, L., Weil, E., 2009. Climate change and wildlife diseases: When does the host matter the most? Ecol. 90. 912-920. https://doi.org/10.1890/08-0616.1
  13. Kang, S.W., Doan, H.T.T., Choe, S.E., Noh, J.H., Yoo, M.S., Reddy, K.E., Kim, Y.H., Chang, K.Y., Jung, S.C., Kweon, C.H., 2013. Molecular investigation of tick-borne pathogens in ticks from grazing cattle in Korea. Parasitol. Int. 62, 276-282. https://doi.org/10.1016/j.parint.2013.02.002
  14. Kim, C.M., Yi, Y.H., Yu, D.H., Lee, M.J., Cho, M.R., Desai, A.R., Shringi, S., Kebin, T.A., Kim, H.C., Song, J.W., Baek, L.J., Chong, S.T., O'Guinn, M.L., Lee, J.S., Lee, I.Y., Park, J.H., Foley, J., Chae, J.S., 2006. Tick-borne rickettsial pathogens in ticks and small mammals in Korea. Appl. Environ. microbiol. 72, 5766-5776. https://doi.org/10.1128/AEM.00431-06
  15. Kim, J.Y., Jung, M., Kho, J.W., Song, H., Moon, K., Kim, Y.H., Lee, D.H., 2020. Characterization of overwintering sites of Haemaphysalis longicornis (Acari: Ixodidae) and tick infection rate with severe fever with thrombocytopenia syndrome virus from eight provinces in South Korea. Ticks Tick Borne Dis. 101490.
  16. Lihou, K., Vineer, R.H., Wall, R., 2020. Distribution and prevalence of ticks and tick-borne disease on sheep and cattle farms in Great Britain. Parasit. Vectors 13, 1-10. https://doi.org/10.1186/s13071-019-3862-4
  17. Moon, B.C., Jeong, J.H., Choi, Y.J., Kim, J.E., Seo, H.J., Shin, E.H., Song B.G., Lee, H.I., Lee, S.H., Park, K.H., Jang W.J., 2009. Detection and identification of the spotted fever group rickettsial agents from Haemaphysalis ticks in Jeju island, Korea. J. Bacteriol. Virol. 39, 317-327. https://doi.org/10.4167/jbv.2009.39.4.317
  18. Raghavan, R.K., Barker, S.C., Cobos, M.E., Barker, D., Teo, E.J.M., Foley, D.H., Nakao, R., Lawrence, K., Heath, A.C.G., Peterson, A.T., 2019. Potential spatial distribution of the newly introduced long-horned tick, Haemaphysalis longicornis in North America. Sci. Rep. 9, 1-8. https://doi.org/10.1038/s41598-018-37186-2
  19. Sajid, M.S., Kausar, A., Iqbal, A., Abbas, H., Iqbal, Z., Jones, M.K., 2018. An insight into the ecobiology, vector significance and control of Hyalomma ticks (Acari: Ixodidae): A review. Acta. Trop. 187, 229-239. https://doi.org/10.1016/j.actatropica.2018.08.016
  20. Shin, Y.C., Lee, I.Y., Seo, J.H., 2015. Seasonal patterns of ticks in Pocheon and Cheolwon, Republic of Korea. Korean. J. Clin. Lab. Sci. 47, 147-152. https://doi.org/10.15324/kjcls.2015.47.3.147
  21. Sonenshine, D.E., Roe, R.M., 2013. Biology of ticks. volume 2. Oxford University Press, New York.
  22. Steele, G.M., Randolph, S.E., 1985. An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.)(Acari: Ixodidae). I. A unimodal seasonal activity pattern. Bull. Entomol. Res. 75, 489-500. https://doi.org/10.1017/S0007485300014590
  23. Tack, W., Madder, M., Baeten, L., De Frenne, P., Verheyen, K., 2012. The abundance of Ixodes ricinus ticks depends on tree species composition and shrub cover. Parasitol. 139, 1273-1281. https://doi.org/10.1017/S0031182012000625
  24. Wilkinson, P.R., 1970. Factors affecting the distribution and abundance of the cattle tick in Australia: Observations and hypotheses. Acarologia. 12, 492-508.
  25. Wormser, G.P., McKenna D., Piedmonte, N., Vinci, V., Egizi, A.M., Backenson, B., Falco, R.C., 2020. First recognized human bite in the United States by the Asian longhorned tick, Haemaphysalis longicornis. Clin. Infect. Dis. 70, 314-316. https://doi.org/10.1093/cid/ciz449
  26. Yamaguti, N., Tipton, V.J., Keegan, H.L., Toshioka, S., 1971. Tick of Japan, Korea, and Ryukyu Islands. Brigham Young University Science Bulletin, Biological series, Vol. 15, No. 1., Brigham Young University, Provo, Utah, USA.
  27. Yun, S.M., Song, B.G., Choi, W.Y., Park, W.I., Kim, S.Y., Roh, J.Y., Ryou, J.S., Ju, Y.R., Park, C., Shin, E.H., 2012. Prevalence of tick-borne encephalitis virus in ixodid ticks collected from the Republic of Korea during 2011-2012. Osong. Public. Health. Res. Perspect. 3, 213-221. https://doi.org/10.1016/j.phrp.2012.10.004
  28. Zheng, H., Yu, Z., Chen, Z., Zhou, L., Zheng, B., Ma, H., Liu, J., 2011. Development and biological characteristics of Haemaphysalis longicornis (Acari: Ixodidae) under field conditions. Exp. Appl. Acarol. 53, 377-388. https://doi.org/10.1007/s10493-010-9415-3