DOI QR코드

DOI QR Code

Validation and Content Analysis of Putrescine in the Venom of Honeybee (Apis mellifera L.)

서양종꿀벌 일벌독에 함유된 putrescine 밸리데이션 및 함량 분석

  • Choi, Hong Min (Sericulture and Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Kim, Hyo Young (Sericulture and Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Kim, Se Gun (Sericulture and Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences) ;
  • Han, Sang Mi (Sericulture and Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences)
  • 최홍민 (국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 김효영 (국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 김세건 (국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 한상미 (국립농업과학원 농업생물부 잠사양봉소재과)
  • Received : 2020.10.07
  • Accepted : 2021.06.11
  • Published : 2021.09.01

Abstract

The venom of honeybees (Apis mellifera L.) is used to treat many diseases because of its anti-inflammatory and analgesic effects. Bee venom consists of several biologically active molecules and exhibits remarkable anti-cancer effects. However, biological amines, which exhibit diverse functionality such as anti-inflammatory and antibacterial effects, have not been previously reported in bee venom. In this study, we determined the content of putrescine in bee venom by using ultra-performance liquid chromatography. The specificity, accuracy, and precision of the assay were assessed, and the assay validated. The linearity of the putrescine assay was r ≥ 0.99, indicating a moderate level of putrescine in the bee venom. The limit of detection and limit of quantification were both 0.9 ㎍/mL, while the rate of recovery was 96.4%-99.9%. The relative standard deviation (RSD) of the intra-day precision and inter-day precision of the putrescine assay were 0.16% - 0.23% and 0.09% - 0.36%, respectively, with the RSD ≤ 5% indicating excellent precision. Thus, the linearity, limit of detection, limit of quantification, and recovery rate of the putrescine assay were satisfactory. The analysis of the bee venom showed that the putrescine content was 3.1 ± 0.09 mg/g. This study provides fundamental data on putrescine content in bee venom, which will prove useful in further studies of its bioactivity.

서양종 꿀벌(Apis mellifera L.)의 봉독은 예로부터 항염증과 탁월한 진통 효과로 인해 많은 질병 치료에 이용되어 왔다. 이러한 기능성은 멜리틴과 같은 봉독의 다양한 활성물질로부터 기인하며 약리기전에 대한 연구도 활발하다. 그러나 아직까지 봉독 내에 존재하는 생체아민에 대한 연구는 미흡하다. 본 연구에서는 초고성능액체크로마토그래피를 이용하여 봉독 내에 존재하는 생체아민인 putrescine의 존재 여부를 확인하였으며 이에 대한 밸리데이션을 수행하였다. 밸리데이션은 특이성, 정확성 및 정밀도를 평가하고 분석법을 검증하였다. Putrescine 분석의 선형성은 R≥0.99로 높은 선형성을 나타냈으며, 검출한계는 0.9 ㎍/ml, 정량한계는 2.7 ㎍/ml였으며, 회수율은 96.4%-99.9%로 나타났다. Intra-day 정밀도와 inter-day 정밀도의 상대표준편차(RSD) 값은 각각 0.16%-0.23%와 0.09%-0.36%였으며, 이는 RSD 값이 5%이하의 우수한 정밀도를 보였다. 따라서 본 분석법은 putrescine 분석에 있어서 선형성, 검출한계, 정량한계 및 회수율을 모두 만족하는 것으로 확인되었다. 또한 봉독내에 존재하는 putrescine의 함량을 조사해본 결과 3.1 ± 0.09 mg/g 존재하였으며 본 연구를 통해 봉독 내 putrescine 함량에 대한 기본적인 데이터를 제공하며, 이는 다양한 생물 활성에 대한 추가 연구에 유용할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 바이오그린연계농생명혁신기술개발사업(과제번호: PJ01563403)에 의하여 수행되었습니다.

References

  1. Cho, Y.J., Son, M.J., Kim, S.M., Park, H.K., Yeo, H.K., Shim, K.B., 2008. Effect of storage conditions on biogenic amine levels in dark-fished fishes. J. Fish. Mar. Sci. Edu. 20, 135-145.
  2. Clark, S., Camargo, C.A., 2007. Epidemiology of anaphylaxis. Immunol. Allergy Clin North Am. 27, 145-163 https://doi.org/10.1016/j.iac.2007.03.002
  3. De Figueiredo, T.C., de Assis, D.C.S., Menezes, L.D.M., da Silva, G.R., Lanza, I.P., Heneine, L.G.D., de Vasconcelos Cancado, S., 2015. HPLC-UV method validation for the identification and quantification of bioactive amines in commercial eggs. Talanta, 142, 240-245. https://doi.org/10.1016/j.talanta.2015.04.056
  4. De Lima, P.R., Brochetto-Braga, M.R., 2003. Hymenoptera venom review focusing on Apis mellifera. J. Venom. Anim. Toxins incl. Trop. Dis. 9, https://doi.org/10.1590/S1678-91992003000200002
  5. Fennell, J.F., Shipman, W.H., Cole, L.J., 1967. Antibacterial action of a bee venom fraction (melittin) against a penicillin-resistant Staphylococcus and other microorganisms. Res. Dev. Tech. Rep. 5, 1-13.
  6. Han, S.M., Hong, I.P., Woo, S.O., Chun, S.N., Park, K.K., Nicholls, Y.M., Pak, S.C., 2015. The beneficial effects of honeybee venom serum on facial wrinkles in humans. Clin. Interv. Aging. 10, 1587-1592.
  7. Han, S.M., Kim, S.G., Kim, H.Y., Choi, H.M., Moon, H.J., Woo, S.O., Pak, S.C., 2020. Antiviral assessment of honeybee (Apis mellifera L.) venom. Phcog. Mag. 16, 382-385.
  8. Han, S.M., Lee, K.G., Park, K.K., Pak, S.C., 2013. Skin sensitization study of bee venom(Apis mellifera L.) in guinea pigs and rats. Cutan. Ocul. Toxicol. 32, 27-30. https://doi.org/10.3109/15569527.2012.698402
  9. Han, S.M., Lee, K.G., Yeo, J.H., Oh, B.Y., Kim, B.S., Lee, W., Baek, H.J., Kim, S.T., Hwang, S.J., Pak, S.C., 2010. Effects of honeybee venom supplementation in drinking water on growth performance of broiler chickens. Poult. Sci. 89, 2396-2400. https://doi.org/10.3382/ps.2010-00915
  10. Han, S.M., Lee, K.G., Yeo, J.H., Pak, S.C., 2012. Dermal and ocular irritation studies of honeybee (Apis mellifera L.) Venom. Am. J. Chinese Med. 40, 795-800. https://doi.org/10.1142/S0192415X12500590
  11. Han, S.M., Pak, S.C., Nicholls, Y.M., Macfarlane, N., 2016. Evaluation of anti-acne property of purified bee venom serum in humans. J. Cosmet. Dermatol. 15, 324-329. https://doi.org/10.1111/jocd.12227
  12. He, X., Li. J., Zhao, W., Liu, R., Zhang, L., Kong, X., 2015. Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food chem. 171, 405-411. https://doi.org/10.1016/j.foodchem.2014.09.026
  13. Kalac, P., Krausova, P., 2005. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 90, 219-230. https://doi.org/10.1016/j.foodchem.2004.03.044
  14. KFDA (Ministry of Food and Drug Safety), 2015. Drug etc. test method validation guidelines. Osong.
  15. Kim, C.M.H., 2013. Apitherapy-Bee venom therapy, in: Grassberger, M., Sherman, R.A., Gileva, O.S., Kim, C.M.H., Muncuolu, K.Y. (Eds.), Biotherapy-History, principles and practice. Springer, Dordrecht, pp. 77-112.
  16. Kim, M.J., Kim, B.K., Kim, S.M., Park, J.S., Hong, J.K., 2011. Profiling analysis of catecholamines and polyamines in biological samples. J. Anal. Sci. Technol. 24, 319-335. https://doi.org/10.5806/AST.2011.24.5.319
  17. Kolayli, S., Keskin, M., 2020. Chapter 7 - Natural bee products and their apitherapeutic applications. Stud. Nat. Prod. Chem. 66, 175-196. https://doi.org/10.1016/B978-0-12-817907-9.00007-6
  18. Lee, G., Bae, H., 2016. Bee venom phospholipase A2: Yesterday's enemy becomes today's friend. Toxins. 8, 48. https://doi.org/10.3390/toxins8020048
  19. Lee, H.S., Lee, J.D., Koh, H.K., 2003. The review on the study of bee venom in the domestics papers. J. Acupunct. Res. 20, 154-165.
  20. Morgan, E.D., 2010. Biosynthesis in insects. RSC publishing, Cambridge.
  21. Piek, T., 1986. Venoms of the Hymenoptera: Biochemical, pharmacological and behavioural aspects. Academic Press, London.
  22. Proulx, E., Power, S.K., Oliver, D.K., Sargin, D., McLaurin, J., Lambe, E.K., 2020. Apamin improves prefrontal nicotinic impairment in mouse model of Alzheimer's disease. Cereb. Cortex. 30, 563-574.
  23. Shalaby, A.R., 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X
  24. Wehbe, R., Frangieh, J., Rima, M., Obeid, D.E., Sabatier, J.M., Fajloun, Z., 2019. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 24, 2997. https://doi.org/10.3390/molecules24162997