DOI QR코드

DOI QR Code

작은소피참진드기에 대한 다양한 식물체 및 천궁유래물질의 살비 및 기피 효과

Acaricidal and Repellent Activities of Cnidium officinale-derived Compounds Against Haemaphysalis longicornis (Acari: Ixodidae)

  • 안현모 (충북대학교 농업생명환경대학 식물의학과) ;
  • 신은경 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김현경 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Ahn, Hyeonmo (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Shin, Eungyeong (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Hyun Kyung (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 투고 : 2021.05.21
  • 심사 : 2021.08.26
  • 발행 : 2021.09.01

초록

충북 청주지역에서 채집된 작은소피참진드기(Haemaphysalis longicornis)에 대하여 다양한 식물체 메탄올 조추출물과 천궁유래 물질들을 이용하여 살비활성과 기피활성을 조사하였다. 총 24종의 식물추출물을 이용한 작은소피참진드기에 대한 살비활성을 조사한 결과, 천궁(Cnidium officinale)에서 93.3%의 살비율로 가장 높은 활성을 보였으며, 기피 효과의 경우 도라지, 미국자리공, 백목련, 어성초, 천궁, 칡잎 등에서 통계적으로 유의미한 차이를 보였다. 기피 및 살비활성이 가장 높은 천궁의 메탄올추출물을 용매 분획한 물질들과 천궁 유래물질인 butylidenephthalide의 활성을 비교한 결과, 헥산(hexane)층 처리 3일 후에 90%의 높은 살비효과를 보였으며 기피반응도 통계적으로 유의미한 차이를 보였다. 천궁유래물질인 butylidenephthalide은 처리 7일 후에 90%의 살비활성을 보였고 T-tube olfactometer 실험에서 모든 작은소피참진드기가 무처리구로 이동하여 기피활성이 있음을 알 수 있었다. 따라서 본 연구결과는 천궁 조추출물과 천궁유래물질인 butylidenephthalide를 이용하여 작은 소피참진드기의 방제 개발에 기초자료로 활용될 수 있을 것으로 생각된다.

This study investigated the acaricidal and repellent activities of various plant extracts and Cnidium officinale-derived materials against Haemaphysalis longicornis. Among the 24 methanolic plant extracts, C. officinale showed the highest acaricidal activity (93.3%) against H. longicornis. Platycodon grandiflorus, Phytolacca americana, Magnolia denudata, Houttuynia cordata, C. officinale, and Pueraria montana showed significant differences in their repellent activity. Consequently, the activity of solvent-fractionated materials and the derived material of the C. officinale, was investigated and a 90% acaricidal effect was observed three days after hexane fraction treatment, indicating that the repellent response was statistically significant. Butylidenephthalide, which is a C. officinale-derived compound, showed 90% acaricidal activity seven days after treatment. Additionally, all H. longicornis moved to the untreated area in the t-tube olfactometer experiment, confirming the repellent activity of butylidenephthalide. Therefore, the results of this study suggest the use of C. officinale crude extract and butylidenephthalide as potent acaricidals and repellents against H. longicornis, respectively.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2020)지원을 받아 작성되었습니다.

참고문헌

  1. Adenubi, O.T., Fasina, F.O., McGawa, L.J., Eloffa, J. N., Naidooc, V., 2016. Plant extracts to control ticks of veterinary and medical importance: A review. S. Afr. J. Bot. 105, 178-193. https://doi.org/10.1016/j.sajb.2016.03.010
  2. Agwunobi, D.O., Pei, T., Wang, K., Yu, Z., Liu, J., 2020. Effects of the essential oil from Cymbopogon citratus on mortality and morphology of the tick Haemaphysalis longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 81, 37-50. https://doi.org/10.1007/s10493-020-00485-3
  3. Ahn, Y.J., Lee, S.B., Lee, H.S., Kim, G.H., 1998. Insecticidal and acaricidal activity of caravacrol and β-thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. J. Chem. Ecol. 24, 81-81. https://doi.org/10.1023/A:1022388829078
  4. Anderson, J.F., Magnarelli, L.A., 2008. Biology of ticks. Infect. Dis. Clin. North Am. 22, 195-215. https://doi.org/10.1016/j.idc.2007.12.006
  5. Benelli, G., Pavela, R., Canale, A., Mehlhorn, H., 2016. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasit. Res. 115, 2545-2560. https://doi.org/10.1007/s00436-016-5095-1
  6. Bianchi, M.W., Barre, N., Messad, S., 2003. Factors related to cattle infestation level and resistance to acaricides in Boophilus microplus tick populations in New Caledonia. Vet. Parasit. 112, 75-89. https://doi.org/10.1016/S0304-4017(02)00415-6
  7. Bissinger, B.W., Roe, R.M., 2010. Tick repellents: Past, present, and future. Pestic. Biochem. Physiol. 96, 63-79. https://doi.org/10.1016/j.pestbp.2009.09.010
  8. Chae, S.H., Kim, S.I., Yeon, S.H., Lee, S.W., 2011. Adulticidal activity of phthalides identified in Cnidium officinale Rhizome to Band Q-Biotypes of Bemisia tabaci. J. Agric. Food Chem. 59, 8193-8198. https://doi.org/10.1021/jf201927t
  9. Choi, H.S., Kim, M.S.L., Sawamura, M., 2002. Constituents of the essential oil of Cnidium officinale Makino, a Korean medicinal plant. Flavour Fragr. J. 17, 49-53. https://doi.org/10.1002/ffj.1038
  10. Colwell, D.D., Dantas-Torres, F., Otranto, D., 2011. Vector-borne parasitic zoonoses: Emerging scenarios and new perspectives. Vet. Parasit. 182, 14-21. https://doi.org/10.1016/j.vetpar.2011.07.012
  11. El-Wakeil, N.E., 2013. Botanical Pesticides and Their Mode of Action. Gesunde Pflanz. 65, 125-149. https://doi.org/10.1007/s10343-013-0308-3
  12. Enan, E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. 130, 325-337. https://doi.org/10.1016/S1532-0456(01)00255-1
  13. Ghosh, A., Chowdhury, N., Chandra, G., 2012. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 135, 581-598.
  14. Hagimori, I., Machida, H., Goi, R., Mencke, N., 2005. Efficacy of imidacloprid/permethrin and fipronil/(S)-methoprene combinations against Haemaphysalis longicornis ticks evaluated under in vitro and in vivo conditions. Parasitol. Res. 97, S120-S126.
  15. Haouas, D., Guido, F., Monia, B.H.K., Habib, B.H.M., 2011. Identification of an insecticidal polyacetylene derivative from Chrysanthemum macrotum leaves. Ind. Crops and Prod. 34, 1128-1134. https://doi.org/10.1016/j.indcrop.2011.03.032
  16. Hoogstraal, H., Roberts, F.H.S., Kohls, G.M., Tipton, V.J., 1968. Review of Haemaphysaus (Kaiseriana) longicornis Neumann (resurrected) of Australia, New Zealand, New Caledonia, Fiji, Japan, Korea, and northeastern China and U.S.S.R. and its parthenogenetic and bisexual populations (Ixodoidea, Ixodidae). J. Parasitol. 54, 1197-1213. https://doi.org/10.2307/3276992
  17. Isman, M.B., 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann. Rev. Entomol. 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
  18. Kim, D.Y., Kim, D.M., 2018. The most common mite- and Tickborne Infectious Diseases in Korea: Scrub typhus and severe fever Thrombocytopenia Syndrome. Korean J. Med. 93, 416-423. https://doi.org/10.3904/kjm.2018.93.5.416
  19. Kim, K.H., Yi, J., Kim, G., Choi, S.J., Jun, K.I., Kim, N.H., Choe, P.G., Kim, N.J., Lee, J.K., Oh, M., 2013. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg. Infect. Dis. 19, 1892-1894.
  20. Kongkiatpaiboon, S., Mikulicic, S., Keeratinijakal, V., Greger, H., Gritsanapan, W., 2013. HPLC simultaneous analysis for quality assessment of Stemona curtisii roots and determination of their insecticidal activities. Ind. Crops Prod. 43, 648-653. https://doi.org/10.1016/j.indcrop.2012.08.014
  21. Krober, T., Guerin, P.M., 2007. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag. Sci. 63, 17-22. https://doi.org/10.1002/ps.1293
  22. Kwon, J.H., Ahn, Y.J., 2002. Acaricidal activity of Butylidenephthalide identified in Cnidium officinale Rhizome against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 50, 4479-4483. https://doi.org/10.1021/jf020293a
  23. Kwon, J.H., Ahn, Y.J., 2003. Acaricidal activity of Cnidium officinale rhizome-derived butylidenephthalide against Tyrophagus putrescentiae (Acari: Acaridae). Pest Manag. Sci. 59, 119-123. https://doi.org/10.1002/ps.607
  24. Landau, S.Y., Provenza, F.D., Gardner, D.R., Pfister, J.A., Knoppel, E.L., Peterson, C., Kababya, D., Needham, G.R., Villalba, J.J., 2009. Neem-tree (Azadirachta indica Juss.) extract as a feed additive against the American dog tick (Dermacentor variabilis) in sheep (Ovis aries). Vet. Parasitol. 165, 311-317. https://doi.org/10.1016/j.vetpar.2009.07.047
  25. Lee, D.W., Chang, K.S., Kim, M.J., Ahn, J.Y., Jo, H.C., Kim, S.I., 2015. Acaricidal activity of commercialized insecticides against Haemaphysalis longicornis (Acari: Ixodidae) nymphs. J. Asia-Pac. Entomol. 18, 715-718. https://doi.org/10.1016/j.aspen.2015.09.004
  26. Lupi, E., Hatz, C., Schlagenhauf, P., 2013. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. -A literature review. Travel Med. Infect. Dis. 11, 374-411. https://doi.org/10.1016/j.tmaid.2013.10.005
  27. Mehlhorn, H., 2016. Encyclopedia of Parasitology, 4th ed., Springer, New York.
  28. Mehlhorn, H., Schmahl, G., Schmidt, J., 2005. Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol. Res. 95, 363-365. https://doi.org/10.1007/s00436-004-1297-z
  29. Nong, X., Tan, Y.J., Wang, J.H., Xie, Y., Fang, C.L., Chen, L., Liu, T.F., Yang, D.Y., Gu, X.B., Peng, X.R., Wang, S.X., Yang, G.Y., 2013. Evaluation acaricidal efficacy of botanical extract from Eupatorium adenophorum against the hard tick Haemaphysalis longicornis (Acari: Ixodidae). Exp. Parasitol. 135, 558-563. https://doi.org/10.1016/j.exppara.2013.09.001
  30. Pavela, R., 2015. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 76, 174-187. https://doi.org/10.1016/j.indcrop.2015.06.050
  31. Pavela, R., Benelli, G., 2016. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000-1007. https://doi.org/10.1016/j.tplants.2016.10.005
  32. Roberts, R., Chamberlain, W.F., 1963. Factors contributing to the loss of insecticide deposits on cattle. J. Econ. Entomol. 56, 614-618. https://doi.org/10.1093/jee/56.5.614
  33. Samish, M., Rehacek, J., 1999. Pathogens and predators of ticks and their potential in biological control. Ann. Rev. Entomol. 44, 159-182. https://doi.org/10.1146/annurev.ento.44.1.159
  34. SAS Institute, 2009. SAS user's guide; statistics, version 9.1 ed. SAS Institute, Cary, NC.
  35. Semmler, M., Abdel-Ghaffar, F., Al-Rasheid, K.A.S., Mehlhorn, H., 2009. Nature helps: From research to products against bloodsucking arthropods. Parasitol. Res. 105, 1483-1487. https://doi.org/10.1007/s00436-009-1634-3
  36. Semmler, M., Abdel-Ghaffar, F., Al-Rasheid, K.A.S., Mehlhorn, H., 2011. Comparison of the tick repellent efficacy of chemical and biological products originating from Europe and the USA. Parasitol. Res. 108, 899-904. https://doi.org/10.1007/s00436-010-2131-4
  37. Suh, J.H., Kim, H.C., Yun, S.M., Lim, J.W., Kim, J.H., Chong, S.T., Kim, D.H., Kim, H.T., K, H., Klein, T.A., Johnson, J.L., Lee, W.J., 2016. Detection of SFTS virus in Ixodes nipponensis and Amblyomma testudinarium (ixodida: ixodidae) collected from reptiles in the Republic of Korea. J. Med. Entomol. 53, 584-590. https://doi.org/10.1093/jme/tjw007
  38. Tsukamoto, T., Ishikawa, Y,. Miyazawa, M., 2005. Larvicidal and Adulticidal activity of Alkylphthalide derivatives from Rhizome of Cnidium officinale against Drosophila melanogaster. J. Agric. Food Chem. 53, 5549-5553. https://doi.org/10.1021/jf050110v
  39. Tsukamoto, T., Nakatani, S., Yoshioka, Y., Sakai N., Horibe I., Ishikawa Y., Miyazawa, M., 2006. Comparison of larvicidal, adulticidal and acaricidal activity of two geometrical butylidenephthalide isomers. Biol. Pharm. Bull. 29, 592-594. https://doi.org/10.1248/bpb.29.592
  40. Yamaguti, N., Tipton, V.J., Keegan, H.L., Toshioka, S., 1971. Tick of Japan, Korea, and Ryukyu Islands. Brigham Young University Science Bulletin, Biological Series, Vol. 15, No. 1., Brigham Young University, Provo, Utah, USA.