과제정보
본 연구는 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. NRF-2018R1D1A1A02086148)이며, 또한 과학기술정보통신부 및 정보통신기술진흥센터의 대학 ICT 연구센터지원 사업의 연구결과로 수행되었음(IITP-2021-2018-0-01417).
참고문헌
- Dong, X., Chawla, N. V., and Swami, A., "metapath2vec: Scalable Representation Learning for Heterogeneous Networks," In Proc. of Int. Conference on Information and Knowledge Management, pp. 135- 144, 2017.
- Fionda, V. and Pirro, G., "Triple2Vec: Learning Triple Embeddings fromKnowledge Graphs," AAAI, 2020.
- Gao, Z., Fu, G., and Ouyang, C., "edge2vec: Representation learning using edge semantics for biomedical knowledge discovery," BMC Bioinformatics, 2019.
- Grover, A. and Leskovec, J., "node2vec: Scalable Feature Learning for Networks," In Proc. of Int. Conference on Knowledge Discovery and Data Mining, pp. 855-864, 2016.
- Hastie, T., Rosset, S., Zhu, J., and Zou, H., "Multi-class AdaBoost," Statistics and Its Interface, Vol. 2, No. 3, pp. 349-360, 2009. https://doi.org/10.4310/SII.2009.v2.n3.a8
- Hearst, M. A., "Support Vector Machines," IEEE Intelligent Systems, Vol. 13, pp. 18-28, 1998. https://doi.org/10.1109/5254.708428
- Hwang, S. H. and Kim, D. H., "BERT-based Classification Model for Korean Documents," The Journal of Society for e-Business Studies, Vol. 25, No. 1, 2020.
- Kipf, T. and Welling, M., "Semi-Supervised Classification with Graph Convolutional Networks," Proceedings of the 5th International Conference on Learning Representation, 2017.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E., "ImageNet Classification with Deep Convolutional Neural Networks," NIPs, 2012.
- Lee, S.-E. and Kim, H.-J., "A New Ensemble Machine Learning Technique with Multiple Stacking," The Jounal of Society for e-Business Studies, Vol. 25, No. 3, pp. 1-13, 2020.
- Liaw, A. and Wiener, M., "Classification and Regression by randomForest," R News, Vol. 2/3, pp. 18-22, 2002.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J., "Distributed Representations of Words and Phrases and their Compositionality," NIPs, 2013.
- Patil, T. R. and Sherekar, S. S., "Performance analysis of Naive Bayes and J48 classification algorithm for data classification," International Journal of Computer Science and Applications, Vol. 6, No. 2, pp. 256-261, 2013.
- Perozzi, B., Al-Rfou, R., and Skiena, S., "Deepwalk: OnLine Learning of Social rRpresentations," In Proc. of KDD, pp. 701-710, 2014.
- Pirro, G., "Building relatedness explanations from knowledge graphs," ICAR-CNR, 2019.
- Pregibon, D., "Logistic Regression Diagnostics," The Annals of Statistics, Vol. 9, No. 4, pp. 705-724, 1981. https://doi.org/10.1214/aos/1176345513
- Scarsell, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G., "The Graph Neural Network Model," IEEE Transactions on Neural Networks, Vol. 20, No. 1, pp. 61-80, 2009. https://doi.org/10.1109/TNN.2008.2005605
- Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling, M., "Modeling Relational Data with Graph Convolutional Networks," ESWC, pp. 593-607, 2018.
- Song, Y.-Y. and Ying, L. U., "Decision tree methods: applications for classification and prediction," Shanghai Arch Psychiatry, Vol. 27, No. 2, pp. 130-135, 2015. https://doi.org/10.11919/j.issn.1002-0829.215044
- Zhang, M.-L. and Zhou, Z.-H., "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognition, Vol. 40, No. 7, pp. 2038-2048, 2007. https://doi.org/10.1016/j.patcog.2006.12.019