DOI QR코드

DOI QR Code

Reconstruction of Terrestrial Water Storage of GRACE/GFO Using Convolutional Neural Network and Climate Data

  • Jeon, Woohyu (Department of Earth Science Education, Seoul National University) ;
  • Kim, Jae-Seung (Department of Earth Science Education, Seoul National University) ;
  • Seo, Ki-Weon (Department of Earth Science Education, Seoul National University)
  • Received : 2021.08.10
  • Accepted : 2021.08.24
  • Published : 2021.08.31

Abstract

Gravity Recovery and Climate Experiment (GRACE) gravimeter satellites observed the Earth gravity field with unprecedented accuracy since 2002. After the termination of GRACE mission, GRACE Follow-on (GFO) satellites successively observe global gravity field, but there is missing period between GRACE and GFO about one year. Many previous studies estimated terrestrial water storage (TWS) changes using hydrological models, vertical displacements from global navigation satellite system observations, altimetry, and satellite laser ranging for a continuity of GRACE and GFO data. Recently, in order to predict TWS changes, various machine learning methods are developed such as artificial neural network and multi-linear regression. Previous studies used hydrological and climate data simultaneously as input data of the learning process. Further, they excluded linear trends in input data and GRACE/GFO data because the trend components obtained from GRACE/GFO data were assumed to be the same for other periods. However, hydrological models include high uncertainties, and observational period of GRACE/GFO is not long enough to estimate reliable TWS trends. In this study, we used convolutional neural networks (CNN) method incorporating only climate data set (temperature, evaporation, and precipitation) to predict TWS variations in the missing period of GRACE/GFO. We also make CNN model learn the linear trend of GRACE/GFO data. In most river basins considered in this study, our CNN model successfully predicts seasonal and long-term variations of TWS change.

Keywords

Acknowledgement

This study was supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) research grant (KIMST20190361), National Research Foundation of Korea (NRF) grant (NO. 2020R1A2C2006857).

References

  1. Ahmed, M., Sultan, M., Elbayoumi, T., & Tissot, P., 2019, Forecasting grace data over the African watersheds using artificial neural networks. Remote Sensing, 11(15), 1769. https://doi.org/10.3390/rs11151769
  2. Albawi, S., Mohammed, T. A., & Al-Zawi, S., 2017, Understanding of a convolutional neural network. 1-6.
  3. Becker, M., Meyssignac, B., Xavier, L., Cazenave, A., Alkama, R., & Decharme, B., 2011, Past terrestrial water storage (1980-2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data. Hydrology and Earth System Sciences, 15(2), 533-546. https://doi.org/10.5194/hess-15-533-2011
  4. Chen, J. L., Wilson, C. R., & Tapley, B. D., 2013, Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7), 549-552. https://doi.org/10.1038/ngeo1829
  5. He, K., Zhang, X., Ren, S., & Sun, J., 2015, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Paper presented at the Proceedings of the IEEE international conference on computer vision.
  6. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., et al. 2019, ERA5 monthly averaged data on single levels from 1979 to present.
  7. Humphrey, V., Gudmundsson, L., & Seneviratne, S. I., 2017, A global reconstruction of climate-driven subdecadal water storage variability. Geophysical Research Letters, 44(5), 2300-2309. https://doi.org/10.1002/2017GL072564
  8. Ioffe, S., & Szegedy, C., 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift. Paper presented at the International conference on machine learning.
  9. Irrgang, C., Saynisch-Wagner, J., Dill, R., Boergens, E., & Thomas, M., 2020, Self-Validating Deep Learning for Recovering Terrestrial Water Storage From Gravity and Altimetry Measurements. Geophysical Research Letters, 47(17).
  10. Kim, J. S., Seo, K. W., Jeon, T., Chen, J. L., & Wilson, C. R., 2019, Missing Hydrological Contribution to Sea Level Rise. Geophysical Research Letters. ://WOS:000496185900001
  11. Kingma, D. P., & Ba, J., 2014, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  12. Li, F., Kusche, J., Rietbroek, R., Wang, Z., Forootan, E., Schulze, K., & Luck, C., 2020, Comparison of DataDriven Techniques to Reconstruct (1992-2002) and Predict (2017-2018) GRACE-Like Gridded Total Water Storage Changes Using Climate Inputs. Water Resources Research, 56(5).
  13. Loomis, B. D., Luthcke, S. B., & Sabaka, T. J., 2019, Regularization and error characterization of GRACE mascons. J Geod, 93(9), 1381-1398. https://www.ncbi.nlm.nih.gov/pubmed/32454568 https://doi.org/10.1007/s00190-019-01252-y
  14. Mo, S., Zhong, Y., Shi, X., Feng, W., Yin, X., & Wu, J., 2021, Filling the gap between GRACE- and GRACEFO-derived terrestrial wate storage anomalies with Bayesian convolutional neural networks.
  15. Nair, V., & Hinton, G. E., 2010, Rectified linear units improve restricted boltzmann machines. Paper presented at the Icml.
  16. Nash, J. E., & Sutcliffe, J. V., 1970, River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  17. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al., 2019, Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32, 8026-8037.
  18. Richter, H. M. P., Luck, C., Klos, A., Sideris, M. G., Rangelova, E., & Kusche, J., 2021, Reconstructing GRACE-type time-variable gravity from the Swarm satellites. Sci Rep, 11(1), 1117. https://www.ncbi.nlm.nih.gov/pubmed/33441938 https://doi.org/10.1038/s41598-020-80752-w
  19. Rietbroek, R., Fritsche, M., Dahle, C., Brunnabend, S.-E., Behnisch, M., Kusche, J., et al., 2014, Can GPSDerived Surface Loading Bridge a GRACE Mission Gap? Surveys in Geophysics, 35(6), 1267-1283. https://doi.org/10.1007/s10712-013-9276-5
  20. Ross, S. M., 2004, Introduction to probability and statistics for engineers and scientists: Elsevier.
  21. Save, H. 2019, CSR GRACE RL06 Mascon Solutions [Equi-angular geospatial grids]. Retrieved from: https://doi.org/10.18738/T8/UN91VR
  22. Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Muller Schmied, H., van Beek, L. P. H., et al., 2018, Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National academy of Sciences of the United States of America, 115(6), E1080-E1089. https://www.ncbi.nlm.nih.gov/pubmed/29358394 https://doi.org/10.1073/pnas.1704665115
  23. Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., et al., 2016, Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52(12), 9412-9429. https://doi.org/10.1002/2016WR019494
  24. Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., et al., 2018, Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219-222. https://doi.org/10.1038/s41586-018-0179-y
  25. Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., & Zhong, Z., 2019, Combining Physically Based Modeling and Deep Learning for Fusing GRACE Satellite Data: Can We Learn From Mismatch? Water Resources Research, 55(2), 1179-1195. https://doi.org/10.1029/2018WR023333
  26. Sun, Z., Long, D., Yang, W., Li, X., & Pan, Y., 2020, Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resources Research, 56(4), e2019WR 026250. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026250
  27. Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., et al., 2019, Contributions of GRACE to understanding climate change. Nature Climate Change, 9(5), 358-369. https://doi.org/10.1038/s41558-019-0456-2
  28. Trabucco, A., & Zomer, R. J., 2018, Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf, 10.
  29. Wada, Y., Lo, M.-H., Yeh, P. J. F., Reager, J. T., Famiglietti, J. S., Wu, R.-J., & Tseng, Y.-H., 2016, Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change, 6(8), 777-780. https://doi.org/10.1038/nclimate3001
  30. Wang, F., Shen, Y., Chen, Q., & Wang, W., 2021, Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multichannel singular spectrum analysis. Journal of Hydrology, 594, 125972. https://doi.org/10.1016/j.jhydrol.2021.125972