Acknowledgement
This work was supported by the Technology Innovation Program (10074278) funded by the Ministry of Trade, Industry & Energy (MI, Korea) and by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2017R1A5A1015311).
References
- Alvarez-Montoya, J., Carvajal-Castrillon, A. and Sierra-Perez, J. (2019), "In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition", Mech. Syst. Signal Process., 136, 106526. https://doi.org/10.1016/j.ymssp.2019.106526
- Botelho, E.C., Silva, R.A., Pardini, L.C. and Rezende, M.C. (2006), "A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures", Mater. Res., 9(3), 247-256. http://dx.doi.org/10.1590/S1516-14392006000300002
- Hassan, M.H., Othman, A.R. and Kamaruddin, S (2017), "A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures", Int. J. Adv. Manuf. Technol., 91, 4081-4094. https://doi.org/10.1007/s00170-017-0096-5
- Herszberg, I., Bannister, M.K., Li, H.C.H., Thomson, R.S. and White, C. (2007), "Structural health monitoring for advanced composite structures", Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan, July.
- Kim, K., Park, Y., Kim, Y.Y., Shrestha, P. and Kim, C.G. (2015), "Aircraft health and monitoring system for in-flight strain measurement of a wing structure", Smart Mater. Struct., 24(10), 105003. http://dx.doi.org/10.1088/0964-1726/24/10/105003
- Kressel, I., Hangelman, A., Botsev, Y., Balter, J., Guedj, P., Gorbatov, N., Tur, M., Pillai, A., Prasad, M.H., Gupta, N., Joseph, A.M. and Sundaram, R. (2012), "Evaluation of flight data from an airworthy structural health monitoring system integrally embedded in an unmanned air vehicle", Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, July.
- Kwon, H., Park, Y., Kim, J. and Kim, C.G. (2019), "Embedded fiber Bragg grating sensor-based wing load monitoring system for composite aircraft", Struct. Health Monitor., 18(4), 1337-1351. https://doi.org/10.1177/1475921719843772
- Molent, L. and Aktepe, B. (2000), "Review of fatigue monitoring of agile military aircraft", Fatig. Fract. Eng. Mater. Struct., 23(9), 767-785. https://doi.org/10.1046/j.1460-2695.2000.00330.x
- On, S.Y., Park, S. and Kim, S.S. (2019), "Preparation and characterization of hybrid structured MWCNT/UHMWPE fiber sensors for strain sensing and load bearing of composite structures", Adv. Mater. Technol., 4(12), 1900807. https://doi.org/10.1002/admt.201900807
- Staszewki, W.J., Mahzan, S. and Traynor, R. (2009), "Health monitoring of aerospace structures-active and passive approach", Compos. Sci. Technol., 69(11-12), 1678-1685. https://doi.org/10.1016/j.compscitech.2008.09.034
- Takeda, S., Minakuchi, S., Okabe, Y. and Takeda, N. (2005), "Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors", Compos. Part A: Appl. Sci. Manuf., 36(7), 903-908. https://doi.org/10.1016/j.compositesa.2004.12.005
- Tang, A.N., Zhou, Z.T. and Cao, J.T. (2010), "A technique of landing gear loads calibration with strain gages", Proceedings of 27th International Congress of the Aeronautical Sciences, Nice, France, September.
- Zhou, D., Ha, D.S. and Inman, D.J. (2010), "Ultra low-power active wireless sensor for structural health monitoring", Smart Struct. Syst., Int. J., 6(5), 675-687. https://doi.org/10.12989/sss.2010.6.5_6.675
- Zhu, H., Wang, X., Liang, J., Lv, H., Tong, H., Ma, L., Hu, Y., Zhu, G., Zhang, T., Tie, Z., Liu, Z., Li, Q., Chen, L., Liu, J. and Jin, Z. (2017), "Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites", Adv. Funct. Mater., 27(21), 1606604. https://doi.org/10.1002/adfm.201606604