과제정보
The research work described in this paper was supported by National Science Foundation under award number 1839833 and number 2004658.
참고문헌
- ASCE 7-98 (1999), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
- Cabada, R.Z., Rangel, H.R., Estrada, M.L.B. and Lopez, H.M.C. (2020), "Hyperparameter optimization in CNN for learningcentered emotion recognition for intelligent tutoring systems", Soft Comput., 24(10), 7593-7602. https://doi.org/10.1007/s00500-019-04387-4
- Chen, G., Wu, J., Yu, J., Dharani, L.R. and Barker, M. (2001), "Fatigue assessment of traffic signal mast arms based on field test data under natural wind gusts", Transport. Res. Record, 1770(1), 188-194. https://doi.org/10.3141/1770-24
- Chen, F., Li, Q.S., Wu, J.R. and Fu, J.Y. (2011), "Wind effects on a long-span beam string roof structure: Wind tunnel test, field measurement and numerical analysis", J. Constr. Steel Res., 67(10), 1591-1604. https://doi.org/10.1016/j.jcsr.2011.04.003
- Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Quarterly J. Royal Meteorol. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208
- Elman, J.L. (1990), "Finding structure in time", Cognitive Sci., 14(2), 179-211. https://doi.org/10.1016/0364-0213(90)90002-E
- Fang, C., Tang, H., Li, Y. and Zhang, J. (2020), "Stochastic response of a cable-stayed bridge under non-stationary winds and waves using different surrogate models", Ocean Eng., 199, 106967. https://doi.org/10.1016/j.oceaneng.2020.106967
- Fu, X., Li, H.N. and Li, G. (2016), "Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads", Struct. Safety, 58, 1-10. https://doi.org/10.1016/j.strusafe.2015.08.002
- Geurts, C., Vrouwenvelder, T., van Staalduinen, P. and Reusink, J. (1998), "Numerical modelling of rain-wind-induced vibration: Erasmus Bridge, Rotterdam", Struct. Eng. Int., 8(2), 129-135. https://doi.org/10.2749/101686698780489351
- Ghoshal, A., Sundaresan, M.J., Schulz, M.J. and Pai, P.F. (2000), "Structural health monitoring techniques for wind turbine blades", J. Wind Eng. Indust. Aerodyn., 85(3), 309-324. https://doi.org/10.1016/S0167-6105(99)00132-4
- Hamada, A., El Damatty, A.A., Hangan, H. and Shehata, A.Y. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., Int. J., 13(5), 451-469. http://dx.doi.org/10.12989/was.2010.13.5.451
- He, J., Pan, F., Cai, C.S., Habte, F. and Chowdhury, A. (2018), "Finite-element modeling framework for predicting realistic responses of light-frame low-rise buildings under wind loads", Eng. Struct., 164, 53-69. https://doi.org/10.1016/j.engstruct.2018.01.034
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hong, A.L., Ubertini, F. and Betti, R. (2011), "Wind analysis of a suspension bridge: identification and finite-element model simulation", J. Struct. Eng., 137(1), 133-142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000279
- Hopfield, J.J. (1982), "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences, 79(8), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554
- Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Indust. Aerodyn., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138
- Hua, X.G., Chen, Z.Q., Lei, X., Wen, Q. and Niu, H.W. (2019), "Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge", Smart Struct. Syst., Int. J., 23(6), 683-693. https://doi.org/10.12989/sss.2019.23.6.683
- Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer Jr, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., Int. J., 6(5_6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
- Jordan, M.I. (1986), "Attractor dynamics and parallelism in a connectionist sequential machine", Proceedings of the Eighth Annual Cognitive Science Society Conference, Lawrence Erlbaum Associates, August.
- Le, V. and Caracoglia, L. (2020), "A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads", Comput. Struct., 231, 106208. https://doi.org/10.1016/j.compstruc.2020.106208
- Levitan, M.L., Mehta, K.C., Vann, W.P. and Holmes, J.D. (1991), "Field measurements of pressures on the Texas Tech building", J. Wind Eng. Indust. Aerodyn., 38(2-3), 227-234. https://doi.org/10.1016/0167-6105(91)90043-V
- Micheli, L., Hong, J., Laflamme, S. and Alipour, A. (2020), "Surrogate models for high performance control systems in wind-excited tall buildings", Appl. Soft Comput., 90, 106133. https://doi.org/10.1016/j.asoc.2020.106133
- Mirowski, P. and Vlachos, A. (2015), "Dependency recurrent neural language models for sentence completion", In: The 53rd Annual Meeting of the Association for Computational Linguistics (ACL), Beijing, China, July.
- Molinari, M., Pozzi, M., Zonta, D. and Battisti, L. (2011), "In-field testing of a steel wind turbine tower", Proceedings of the 28th IMAC, A Conference on Structural Dynamics, New York, USA, June.
- Morchid, M. (2018), "Parsimonious memory unit for recurrent neural networks with application to natural language processing", Neurocomputing, 314, 48-64. https://doi.org/10.1016/j.neucom.2018.05.081
- National Oceanic and Atmospheric Administration (NOAA) (2018), National hurricane center tropical cyclone report Hurricane Michael, National Hurricane Center, FL, USA. https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf
- National Oceanic and Atmospheric Administration (NOAA) (2019), National hurricane center tropical cyclone report Hurricane Dorian, National Hurricane Center, FL, USA. https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf
- Ni, Y.Q., Ko, J.M., Hua, X.G. and Zhou, H.F. (2007), "Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions", Smart Struct. Syst., Int. J., 3(3), 341-356. http://dx.doi.org/10.12989/sss.2007.3.3.341
- Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastr. Eng., 34(10), 843-858. https://doi.org/10.1111/mice.12476
- Park, H.S. and Oh, B.K. (2018), "Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy", Automat. Constr., 85, 273-289. https://doi.org/10.1016/j.autcon.2017.10.025
- Park, E.C., Lee, S.H., Min, K.W., Chung, L., Lee, S.K., Cho, S.H., Yu, E. and Kang, K.S. (2008), "Design of an actuator for simulating wind-induced response of a building structure", Smart Struct. Syst., Int. J., 4(1), 85-98. http://dx.doi.org/10.12989/sss.2008.4.1.085
- Park, J.H., Huynh, T.C., Lee, K.S. and Kim, J.T. (2016), "Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge-benchmark study", Smart Struct. Syst., Int. J., 17(3), 491-522. http://dx.doi.org/10.12989/sss.2016.17.3.491
- Reimers, N. and Gurevych, I. (2017). "Optimal hyperparameters for deep lstm-networks for sequence labeling tasks", In: arXiv preprint, arXiv:1707.06799.
- Repetto, M.P. and Solari, G. (2010). "Wind-induced fatigue collapse of real slender structures", Eng. Struct., 32(12), 3888-3898. https://doi.org/10.1016/j.engstruct.2010.09.002
- Sun, S.B., He, Y.Y., Zhou, S.D. and Yue, Z.J. (2017), "A datadriven response virtual sensor technique with partial vibration measurements using convolutional neural network", Sensors, 17(12), 2888. http://dx.doi.org/10.3390/s17122888
- Tamura, Y., Matsui, M., Pagnini, L.C., Ishibashi, R. and Yoshida, A. (2002), "Measurement of wind-induced response of buildings using RTK-GPS", J. Wind Eng. Indust. Aerodyn., 90(12-15), 1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-8
- Tort, C., Sahin, S. and Hasancebi, O. (2017), "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER", Comput. Struct., 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017
- Wong, K.Y., Lau, C.K. and Flint, A.R. (2000), "Planning and implementation of the structural health monitoring system for cable-supported bridges in Hong Kon", In: Nondestructive evaluation of highways, utilities, and pipelines IV. International Society for Optics and Photonics, Newport Beach, CA, USA, March.
- Wu, R.T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145(1), 04018125. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001556
- Xue, J., Mohammadi, F., Li, X., Sahraei-Ardakani, M., Ou, G. and Pu, Z. (2020), "Impact of transmission tower-line interaction to the bulk power system during hurricane", Reliabil. Eng. Syst. Safety, 203, 107079. https://doi.org/10.1016/j.ress.2020.107079
- Yin, W., Kann, K., Yu, M. and Schutze, H. (2017), "Comparative study of cnn and rnn for natural language processing", arXiv preprint, arXiv:1702.01923.
- Zhang, J.W. and Li, Q.S. (2018), "Field measurements of wind pressures on a 600 m high skyscraper during a landfall typhoon and comparison with wind tunnel test", J. Wind Eng. Indust. Aerodyn., 175, 391-407. https://doi.org/10.1016/j.jweia.2018.02.012
- Zhang, R., Chen, Z., Chen, S., Zheng, J., Buyukozturk, O. and Sun, H. (2019), "Deep long short-term memory networks for nonlinear structural seismic response prediction", Comput. Struct., 220, 55-68. https://doi.org/10.1016/j.compstruc.2019.05.006
- Zhou, S. and Song, W. (2020), "Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection", Automat. Constr., 114, 103171. https://doi.org/10.1016/j.autcon.2020.103171
- Zhu, L.D., Li, L., Xu, Y.L. and Zhu, Q. (2012), "Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck", J. Fluids Struct., 30, 35-50. https://doi.org/10.1016/j.jfluidstructs.2011.09.002